Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.ndimage »

Fonction binary_closing - module scipy.ndimage

Signature de la fonction binary_closing

def binary_closing(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False, *, axes=None) 

Description

help(scipy.ndimage.binary_closing)

Multidimensional binary closing with the given structuring element.

The *closing* of an input image by a structuring element is the
*erosion* of the *dilation* of the image by the structuring element.

Parameters
----------
input : array_like
    Binary array_like to be closed. Non-zero (True) elements form
    the subset to be closed.
structure : array_like, optional
    Structuring element used for the closing. Non-zero elements are
    considered True. If no structuring element is provided an element
    is generated with a square connectivity equal to one (i.e., only
    nearest neighbors are connected to the center, diagonally-connected
    elements are not considered neighbors).
iterations : int, optional
    The dilation step of the closing, then the erosion step are each
    repeated `iterations` times (one, by default). If iterations is
    less than 1, each operations is repeated until the result does
    not change anymore. Only an integer of iterations is accepted.
output : ndarray, optional
    Array of the same shape as input, into which the output is placed.
    By default, a new array is created.
origin : int or tuple of ints, optional
    Placement of the filter, by default 0.
mask : array_like, optional
    If a mask is given, only those elements with a True value at
    the corresponding mask element are modified at each iteration.

    .. versionadded:: 1.1.0
border_value : int (cast to 0 or 1), optional
    Value at the border in the output array.

    .. versionadded:: 1.1.0
brute_force : boolean, optional
    Memory condition: if False, only the pixels whose value was changed in
    the last iteration are tracked as candidates to be updated in the
    current iteration; if true al pixels are considered as candidates for
    update, regardless of what happened in the previous iteration.
    False by default.

    .. versionadded:: 1.1.0
axes : tuple of int or None
    The axes over which to apply the filter. If None, `input` is filtered
    along all axes. If an `origin` tuple is provided, its length must match
    the number of axes.

Returns
-------
binary_closing : ndarray of bools
    Closing of the input by the structuring element.

See Also
--------
grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure

Notes
-----
*Closing* [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of a dilation and an erosion of the
input with the same structuring element. Closing therefore fills
holes smaller than the structuring element.

Together with *opening* (`binary_opening`), closing can be used for
noise removal.

References
----------
.. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

Examples
--------
>>> from scipy import ndimage
>>> import numpy as np
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 0, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0]])


>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 0, 1, 0, 0],
       [0, 0, 1, 0, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 0, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé