Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.ndimage »

Fonction black_tophat - module scipy.ndimage

Signature de la fonction black_tophat

def black_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0) 

Description

black_tophat.__doc__

    Multidimensional black tophat filter.

    Parameters
    ----------
    input : array_like
        Input.
    size : tuple of ints, optional
        Shape of a flat and full structuring element used for the filter.
        Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the black tophat filter.
    structure : array of ints, optional
        Structuring element used for the filter. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the filter may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    black_tophat : ndarray
        Result of the filter of `input` with `structure`.

    Examples
    --------
    Change dark peak to bright peak and subtract background.

    >>> from scipy.ndimage import generate_binary_structure, black_tophat
    >>> square = generate_binary_structure(rank=2, connectivity=3)
    >>> dark_on_gray = np.array([[7, 6, 6, 6, 7],
    ...                          [6, 5, 4, 5, 6],
    ...                          [6, 4, 0, 4, 6],
    ...                          [6, 5, 4, 5, 6],
    ...                          [7, 6, 6, 6, 7]])
    >>> black_tophat(input=dark_on_gray, structure=square)
    array([[0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0],
           [0, 1, 5, 1, 0],
           [0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0]])

    See also
    --------
    white_tophat, grey_opening, grey_closing