Module « scipy.ndimage »
Signature de la fonction find_objects
def find_objects(input, max_label=0)
Description
find_objects.__doc__
Find objects in a labeled array.
Parameters
----------
input : ndarray of ints
Array containing objects defined by different labels. Labels with
value 0 are ignored.
max_label : int, optional
Maximum label to be searched for in `input`. If max_label is not
given, the positions of all objects are returned.
Returns
-------
object_slices : list of tuples
A list of tuples, with each tuple containing N slices (with N the
dimension of the input array). Slices correspond to the minimal
parallelepiped that contains the object. If a number is missing,
None is returned instead of a slice.
See Also
--------
label, center_of_mass
Notes
-----
This function is very useful for isolating a volume of interest inside
a 3-D array, that cannot be "seen through".
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],
[2, 2, 2, 0, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])
>>> ndimage.find_objects(a)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
>>> ndimage.find_objects(a, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
>>> ndimage.find_objects(a == 1, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), None]
>>> loc = ndimage.find_objects(a)[0]
>>> a[loc]
array([[1, 1, 0],
[1, 1, 0],
[0, 0, 1]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :