Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.ndimage »
Signature de la fonction distance_transform_bf
def distance_transform_bf(input, metric='euclidean', sampling=None, return_distances=True, return_indices=False, distances=None, indices=None)
Description
help(scipy.ndimage.distance_transform_bf)
Distance transform function by a brute force algorithm.
This function calculates the distance transform of the `input`, by
replacing each foreground (non-zero) element, with its
shortest distance to the background (any zero-valued element).
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element to each foreground element is returned in a separate array.
Parameters
----------
input : array_like
Input
metric : {'euclidean', 'taxicab', 'chessboard'}, optional
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
The default is 'euclidean'.
sampling : float, or sequence of float, optional
This parameter is only used when `metric` is 'euclidean'.
Spacing of elements along each dimension. If a sequence, must be of
length equal to the input rank; if a single number, this is used for
all axes. If not specified, a grid spacing of unity is implied.
return_distances : bool, optional
Whether to calculate the distance transform.
Default is True.
return_indices : bool, optional
Whether to calculate the feature transform.
Default is False.
distances : ndarray, optional
An output array to store the calculated distance transform, instead of
returning it.
`return_distances` must be True.
It must be the same shape as `input`, and of type float64 if `metric`
is 'euclidean', uint32 otherwise.
indices : int32 ndarray, optional
An output array to store the calculated feature transform, instead of
returning it.
`return_indicies` must be True.
Its shape must be ``(input.ndim,) + input.shape``.
Returns
-------
distances : ndarray, optional
The calculated distance transform. Returned only when
`return_distances` is True and `distances` is not supplied.
It will have the same shape as the input array.
indices : int32 ndarray, optional
The calculated feature transform. It has an input-shaped array for each
dimension of the input. See distance_transform_edt documentation for an
example.
Returned only when `return_indices` is True and `indices` is not
supplied.
See Also
--------
distance_transform_cdt : Faster distance transform for taxicab and
chessboard metrics
distance_transform_edt : Faster distance transform for euclidean metric
Notes
-----
This function employs a slow brute force algorithm. See also the
function `distance_transform_cdt` for more efficient taxicab [1]_ and
chessboard algorithms [2]_.
References
----------
.. [1] Taxicab distance. Wikipedia, 2023.
https://en.wikipedia.org/wiki/Taxicab_geometry
.. [2] Chessboard distance. Wikipedia, 2023.
https://en.wikipedia.org/wiki/Chebyshev_distance
Examples
--------
Import the necessary modules.
>>> import numpy as np
>>> from scipy.ndimage import distance_transform_bf
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1 import ImageGrid
First, we create a toy binary image.
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1):
... # fill circular area with 1
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]]
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2
... circle_shape = np.sqrt(circle) < radius
... image[circle_shape] = fillvalue
... return image
>>> image = np.zeros((100, 100), dtype=np.uint8)
>>> image[35:65, 20:80] = 1
>>> image = add_circle(28, 65, 10, image)
>>> image = add_circle(37, 30, 10, image)
>>> image = add_circle(70, 45, 20, image)
>>> image = add_circle(45, 80, 10, image)
Next, we set up the figure.
>>> fig = plt.figure(figsize=(8, 8)) # set up the figure structure
>>> grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=(0.4, 0.3),
... label_mode="1", share_all=True,
... cbar_location="right", cbar_mode="each",
... cbar_size="7%", cbar_pad="2%")
>>> for ax in grid:
... ax.axis('off') # remove axes from images
The top left image is the original binary image.
>>> binary_image = grid[0].imshow(image, cmap='gray')
>>> cbar_binary_image = grid.cbar_axes[0].colorbar(binary_image)
>>> cbar_binary_image.set_ticks([0, 1])
>>> grid[0].set_title("Binary image: foreground in white")
The distance transform calculates the distance between foreground pixels
and the image background according to a distance metric. Available metrics
in `distance_transform_bf` are: ``euclidean`` (default), ``taxicab``
and ``chessboard``. The top right image contains the distance transform
based on the ``euclidean`` metric.
>>> distance_transform_euclidean = distance_transform_bf(image)
>>> euclidean_transform = grid[1].imshow(distance_transform_euclidean,
... cmap='gray')
>>> cbar_euclidean = grid.cbar_axes[1].colorbar(euclidean_transform)
>>> colorbar_ticks = [0, 10, 20]
>>> cbar_euclidean.set_ticks(colorbar_ticks)
>>> grid[1].set_title("Euclidean distance")
The lower left image contains the distance transform using the ``taxicab``
metric.
>>> distance_transform_taxicab = distance_transform_bf(image,
... metric='taxicab')
>>> taxicab_transformation = grid[2].imshow(distance_transform_taxicab,
... cmap='gray')
>>> cbar_taxicab = grid.cbar_axes[2].colorbar(taxicab_transformation)
>>> cbar_taxicab.set_ticks(colorbar_ticks)
>>> grid[2].set_title("Taxicab distance")
Finally, the lower right image contains the distance transform using the
``chessboard`` metric.
>>> distance_transform_cb = distance_transform_bf(image,
... metric='chessboard')
>>> chessboard_transformation = grid[3].imshow(distance_transform_cb,
... cmap='gray')
>>> cbar_taxicab = grid.cbar_axes[3].colorbar(chessboard_transformation)
>>> cbar_taxicab.set_ticks(colorbar_ticks)
>>> grid[3].set_title("Chessboard distance")
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :