Module « scipy.ndimage »
Signature de la fonction minimum
def minimum(input, labels=None, index=None)
Description
minimum.__doc__
Calculate the minimum of the values of an array over labeled regions.
Parameters
----------
input : array_like
Array_like of values. For each region specified by `labels`, the
minimal values of `input` over the region is computed.
labels : array_like, optional
An array_like of integers marking different regions over which the
minimum value of `input` is to be computed. `labels` must have the
same shape as `input`. If `labels` is not specified, the minimum
over the whole array is returned.
index : array_like, optional
A list of region labels that are taken into account for computing the
minima. If index is None, the minimum over all elements where `labels`
is non-zero is returned.
Returns
-------
minimum : float or list of floats
List of minima of `input` over the regions determined by `labels` and
whose index is in `index`. If `index` or `labels` are not specified, a
float is returned: the minimal value of `input` if `labels` is None,
and the minimal value of elements where `labels` is greater than zero
if `index` is None.
See also
--------
label, maximum, median, minimum_position, extrema, sum, mean, variance,
standard_deviation
Notes
-----
The function returns a Python list and not a NumPy array, use
`np.array` to convert the list to an array.
Examples
--------
>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 0],
[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
[1.0, 4.0, 3.0]
>>> ndimage.minimum(a)
0.0
>>> ndimage.minimum(a, labels=labels)
1.0
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :