Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.ndimage »

Fonction morphological_gradient - module scipy.ndimage

Signature de la fonction morphological_gradient

def morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0, *, axes=None) 

Description

help(scipy.ndimage.morphological_gradient)

Multidimensional morphological gradient.

The morphological gradient is calculated as the difference between a
dilation and an erosion of the input with a given structuring element.

Parameters
----------
input : array_like
    Array over which to compute the morphlogical gradient.
size : tuple of ints
    Shape of a flat and full structuring element used for the mathematical
    morphology operations. Optional if `footprint` or `structure` is
    provided. A larger `size` yields a more blurred gradient.
footprint : array of ints, optional
    Positions of non-infinite elements of a flat structuring element
    used for the morphology operations. Larger footprints
    give a more blurred morphological gradient.
structure : array of ints, optional
    Structuring element used for the morphology operations. `structure` may
    be a non-flat structuring element. The `structure` array applies
    offsets to the pixels in a neighborhood (the offset is additive during
    dilation and subtractive during erosion)
output : array, optional
    An array used for storing the output of the morphological gradient
    may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
    The `mode` parameter determines how the array borders are
    handled, where `cval` is the value when mode is equal to
    'constant'. Default is 'reflect'
cval : scalar, optional
    Value to fill past edges of input if `mode` is 'constant'. Default
    is 0.0.
origin : scalar, optional
    The `origin` parameter controls the placement of the filter.
    Default 0
axes : tuple of int or None
    The axes over which to apply the filter. If None, `input` is filtered
    along all axes. If an `origin` tuple is provided, its length must match
    the number of axes.

Returns
-------
morphological_gradient : ndarray
    Morphological gradient of `input`.

See Also
--------
grey_dilation, grey_erosion, gaussian_gradient_magnitude

Notes
-----
For a flat structuring element, the morphological gradient
computed at a given point corresponds to the maximal difference
between elements of the input among the elements covered by the
structuring element centered on the point.

References
----------
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology

Examples
--------
>>> from scipy import ndimage
>>> import numpy as np
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 0, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\
...  ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 0, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 3, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 2, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 2, 3, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 0, 0, 0, 0, 0, 0]])



Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé