Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.ndimage »

Fonction binary_propagation - module scipy.ndimage

Signature de la fonction binary_propagation

def binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0, *, axes=None) 

Description

help(scipy.ndimage.binary_propagation)

Multidimensional binary propagation with the given structuring element.

Parameters
----------
input : array_like
    Binary image to be propagated inside `mask`.
structure : array_like, optional
    Structuring element used in the successive dilations. The output
    may depend on the structuring element, especially if `mask` has
    several connex components. If no structuring element is
    provided, an element is generated with a squared connectivity equal
    to one.
mask : array_like, optional
    Binary mask defining the region into which `input` is allowed to
    propagate.
output : ndarray, optional
    Array of the same shape as input, into which the output is placed.
    By default, a new array is created.
border_value : int (cast to 0 or 1), optional
    Value at the border in the output array.
origin : int or tuple of ints, optional
    Placement of the filter, by default 0.
axes : tuple of int or None
    The axes over which to apply the filter. If None, `input` is filtered
    along all axes. If an `origin` tuple is provided, its length must match
    the number of axes.

Returns
-------
binary_propagation : ndarray
    Binary propagation of `input` inside `mask`.

Notes
-----
This function is functionally equivalent to calling binary_dilation
with the number of iterations less than one: iterative dilation until
the result does not change anymore.

The succession of an erosion and propagation inside the original image
can be used instead of an *opening* for deleting small objects while
keeping the contours of larger objects untouched.

References
----------
.. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
.. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
    image processing", 1998
    ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf

Examples
--------
>>> from scipy import ndimage
>>> import numpy as np
>>> input = np.zeros((8, 8), dtype=int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=int)
>>> mask[1:4, 1:4] = mask[4, 4]  = mask[6:8, 6:8] = 1
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0]])
>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 1, 1],
       [0, 0, 0, 0, 0, 0, 1, 1]])
>>> ndimage.binary_propagation(input, mask=mask).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(input, mask=mask,\
... structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 1, 1, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0]])

>>> # Comparison between opening and erosion+propagation
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
>>> a
array([[1, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 1]])
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0]])
>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(b, mask=a).astype(int)
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0]])



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé