Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.ndimage »
Signature de la fonction distance_transform_cdt
def distance_transform_cdt(input, metric='chessboard', return_distances=True, return_indices=False, distances=None, indices=None)
Description
help(scipy.ndimage.distance_transform_cdt)
Distance transform for chamfer type of transforms.
This function calculates the distance transform of the `input`, by
replacing each foreground (non-zero) element, with its
shortest distance to the background (any zero-valued element).
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element to each foreground element is returned in a separate array.
Parameters
----------
input : array_like
Input. Values of 0 are treated as background.
metric : {'chessboard', 'taxicab'} or array_like, optional
The `metric` determines the type of chamfering that is done. If the
`metric` is equal to 'taxicab' a structure is generated using
`generate_binary_structure` with a squared distance equal to 1. If
the `metric` is equal to 'chessboard', a `metric` is generated
using `generate_binary_structure` with a squared distance equal to
the dimensionality of the array. These choices correspond to the
common interpretations of the 'taxicab' and the 'chessboard'
distance metrics in two dimensions.
A custom metric may be provided, in the form of a matrix where
each dimension has a length of three.
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
The default is 'chessboard'.
return_distances : bool, optional
Whether to calculate the distance transform.
Default is True.
return_indices : bool, optional
Whether to calculate the feature transform.
Default is False.
distances : int32 ndarray, optional
An output array to store the calculated distance transform, instead of
returning it.
`return_distances` must be True.
It must be the same shape as `input`.
indices : int32 ndarray, optional
An output array to store the calculated feature transform, instead of
returning it.
`return_indicies` must be True.
Its shape must be ``(input.ndim,) + input.shape``.
Returns
-------
distances : int32 ndarray, optional
The calculated distance transform. Returned only when
`return_distances` is True, and `distances` is not supplied.
It will have the same shape as the input array.
indices : int32 ndarray, optional
The calculated feature transform. It has an input-shaped array for each
dimension of the input. See distance_transform_edt documentation for an
example.
Returned only when `return_indices` is True, and `indices` is not
supplied.
See Also
--------
distance_transform_edt : Fast distance transform for euclidean metric
distance_transform_bf : Distance transform for different metrics using
a slower brute force algorithm
Examples
--------
Import the necessary modules.
>>> import numpy as np
>>> from scipy.ndimage import distance_transform_cdt
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1 import ImageGrid
First, we create a toy binary image.
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1):
... # fill circular area with 1
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]]
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2
... circle_shape = np.sqrt(circle) < radius
... image[circle_shape] = fillvalue
... return image
>>> image = np.zeros((100, 100), dtype=np.uint8)
>>> image[35:65, 20:80] = 1
>>> image = add_circle(28, 65, 10, image)
>>> image = add_circle(37, 30, 10, image)
>>> image = add_circle(70, 45, 20, image)
>>> image = add_circle(45, 80, 10, image)
Next, we set up the figure.
>>> fig = plt.figure(figsize=(5, 15))
>>> grid = ImageGrid(fig, 111, nrows_ncols=(3, 1), axes_pad=(0.5, 0.3),
... label_mode="1", share_all=True,
... cbar_location="right", cbar_mode="each",
... cbar_size="7%", cbar_pad="2%")
>>> for ax in grid:
... ax.axis('off')
>>> top, middle, bottom = grid
>>> colorbar_ticks = [0, 10, 20]
The top image contains the original binary image.
>>> binary_image = top.imshow(image, cmap='gray')
>>> cbar_binary_image = top.cax.colorbar(binary_image)
>>> cbar_binary_image.set_ticks([0, 1])
>>> top.set_title("Binary image: foreground in white")
The middle image contains the distance transform using the ``taxicab``
metric.
>>> distance_taxicab = distance_transform_cdt(image, metric="taxicab")
>>> taxicab_transform = middle.imshow(distance_taxicab, cmap='gray')
>>> cbar_taxicab = middle.cax.colorbar(taxicab_transform)
>>> cbar_taxicab.set_ticks(colorbar_ticks)
>>> middle.set_title("Taxicab metric")
The bottom image contains the distance transform using the ``chessboard``
metric.
>>> distance_chessboard = distance_transform_cdt(image,
... metric="chessboard")
>>> chessboard_transform = bottom.imshow(distance_chessboard, cmap='gray')
>>> cbar_chessboard = bottom.cax.colorbar(chessboard_transform)
>>> cbar_chessboard.set_ticks(colorbar_ticks)
>>> bottom.set_title("Chessboard metric")
>>> plt.tight_layout()
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :