Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.ndimage »

Fonction binary_dilation - module scipy.ndimage

Signature de la fonction binary_dilation

def binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False, *, axes=None) 

Description

help(scipy.ndimage.binary_dilation)

Multidimensional binary dilation with the given structuring element.

Parameters
----------
input : array_like
    Binary array_like to be dilated. Non-zero (True) elements form
    the subset to be dilated.
structure : array_like, optional
    Structuring element used for the dilation. Non-zero elements are
    considered True. If no structuring element is provided an element
    is generated with a square connectivity equal to one.
iterations : int, optional
    The dilation is repeated `iterations` times (one, by default).
    If iterations is less than 1, the dilation is repeated until the
    result does not change anymore. Only an integer of iterations is
    accepted.
mask : array_like, optional
    If a mask is given, only those elements with a True value at
    the corresponding mask element are modified at each iteration.
output : ndarray, optional
    Array of the same shape as input, into which the output is placed.
    By default, a new array is created.
border_value : int (cast to 0 or 1), optional
    Value at the border in the output array.
origin : int or tuple of ints, optional
    Placement of the filter, by default 0.
brute_force : boolean, optional
    Memory condition: if False, only the pixels whose value was changed in
    the last iteration are tracked as candidates to be updated (dilated)
    in the current iteration; if True all pixels are considered as
    candidates for dilation, regardless of what happened in the previous
    iteration. False by default.
axes : tuple of int or None
    The axes over which to apply the filter. If None, `input` is filtered
    along all axes. If an `origin` tuple is provided, its length must match
    the number of axes.

Returns
-------
binary_dilation : ndarray of bools
    Dilation of the input by the structuring element.

See Also
--------
grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure

Notes
-----
Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for expanding the shapes in an image. The binary
dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the
non-zero points of the image.

References
----------
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

Examples
--------
>>> from scipy import ndimage
>>> import numpy as np
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
       [False, False,  True, False, False],
       [False,  True,  True,  True, False],
       [False, False,  True, False, False],
       [False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False,  True, False],
       [ True,  True,  True],
       [False,  True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True]], dtype=bool)
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])
>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  1.,  0.,  0.]])



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé