Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.ndimage »
Signature de la fonction value_indices
def value_indices(arr, *, ignore_value=None)
Description
help(scipy.ndimage.value_indices)
Find indices of each distinct value in given array.
Parameters
----------
arr : ndarray of ints
Array containing integer values.
ignore_value : int, optional
This value will be ignored in searching the `arr` array. If not
given, all values found will be included in output. Default
is None.
Returns
-------
indices : dictionary
A Python dictionary of array indices for each distinct value. The
dictionary is keyed by the distinct values, the entries are array
index tuples covering all occurrences of the value within the
array.
This dictionary can occupy significant memory, usually several times
the size of the input array.
See Also
--------
label, maximum, median, minimum_position, extrema, sum, mean, variance,
standard_deviation, numpy.where, numpy.unique
Notes
-----
For a small array with few distinct values, one might use
`numpy.unique()` to find all possible values, and ``(arr == val)`` to
locate each value within that array. However, for large arrays,
with many distinct values, this can become extremely inefficient,
as locating each value would require a new search through the entire
array. Using this function, there is essentially one search, with
the indices saved for all distinct values.
This is useful when matching a categorical image (e.g. a segmentation
or classification) to an associated image of other data, allowing
any per-class statistic(s) to then be calculated. Provides a
more flexible alternative to functions like ``scipy.ndimage.mean()``
and ``scipy.ndimage.variance()``.
Some other closely related functionality, with different strengths and
weaknesses, can also be found in ``scipy.stats.binned_statistic()`` and
the `scikit-image <https://scikit-image.org/>`_ function
``skimage.measure.regionprops()``.
Note for IDL users: this provides functionality equivalent to IDL's
REVERSE_INDICES option (as per the IDL documentation for the
`HISTOGRAM <https://www.l3harrisgeospatial.com/docs/histogram.html>`_
function).
.. versionadded:: 1.10.0
Examples
--------
>>> import numpy as np
>>> from scipy import ndimage
>>> a = np.zeros((6, 6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],
[2, 2, 2, 0, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])
>>> val_indices = ndimage.value_indices(a)
The dictionary `val_indices` will have an entry for each distinct
value in the input array.
>>> val_indices.keys()
dict_keys([np.int64(0), np.int64(1), np.int64(2), np.int64(3)])
The entry for each value is an index tuple, locating the elements
with that value.
>>> ndx1 = val_indices[1]
>>> ndx1
(array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4]))
This can be used to index into the original array, or any other
array with the same shape.
>>> a[ndx1]
array([1, 1, 1, 1, 1])
If the zeros were to be ignored, then the resulting dictionary
would no longer have an entry for zero.
>>> val_indices = ndimage.value_indices(a, ignore_value=0)
>>> val_indices.keys()
dict_keys([np.int64(1), np.int64(2), np.int64(3)])
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :