Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Contenu du module « scipy.ndimage »

Liste des fonctions du module scipy.ndimage

Signature de la fonction Description
affine_transform(input, matrix, offset=0.0, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
binary_closing(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False)
binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)
binary_erosion(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)
binary_fill_holes(input, structure=None, output=None, origin=0)
binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)
binary_opening(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False)
binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0)
black_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
center_of_mass(input, labels=None, index=None)
convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
convolve1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) Calculate a 1-D convolution along the given axis. [extrait de convolve1d.__doc__]
correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
correlate1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) Calculate a 1-D correlation along the given axis. [extrait de correlate1d.__doc__]
distance_transform_bf(input, metric='euclidean', sampling=None, return_distances=True, return_indices=False, distances=None, indices=None)
distance_transform_cdt(input, metric='chessboard', return_distances=True, return_indices=False, distances=None, indices=None)
distance_transform_edt(input, sampling=None, return_distances=True, return_indices=False, distances=None, indices=None)
extrema(input, labels=None, index=None)
find_objects(input, max_label=0)
fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)
fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)
fourier_shift(input, shift, n=-1, axis=-1, output=None)
fourier_uniform(input, size, n=-1, axis=-1, output=None)
gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0) Multidimensional Gaussian filter. [extrait de gaussian_filter.__doc__]
gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0) 1-D Gaussian filter. [extrait de gaussian_filter1d.__doc__]
gaussian_gradient_magnitude(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs) Multidimensional gradient magnitude using Gaussian derivatives. [extrait de gaussian_gradient_magnitude.__doc__]
gaussian_laplace(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs) Multidimensional Laplace filter using Gaussian second derivatives. [extrait de gaussian_laplace.__doc__]
generate_binary_structure(rank, connectivity)
generic_filter(input, function, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None) Calculate a multidimensional filter using the given function. [extrait de generic_filter.__doc__]
generic_filter1d(input, function, filter_size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None) Calculate a 1-D filter along the given axis. [extrait de generic_filter1d.__doc__]
generic_gradient_magnitude(input, derivative, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None) Gradient magnitude using a provided gradient function. [extrait de generic_gradient_magnitude.__doc__]
generic_laplace(input, derivative2, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None)
geometric_transform(input, mapping, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={})
grey_closing(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
grey_dilation(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
grey_erosion(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
grey_opening(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
histogram(input, min, max, bins, labels=None, index=None)
iterate_structure(structure, iterations, origin=None)
label(input, structure=None, output=None)
labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False)
laplace(input, output=None, mode='reflect', cval=0.0) N-D Laplace filter based on approximate second derivatives. [extrait de laplace.__doc__]
map_coordinates(input, coordinates, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
maximum(input, labels=None, index=None)
maximum_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0) Calculate a multidimensional maximum filter. [extrait de maximum_filter.__doc__]
maximum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) Calculate a 1-D maximum filter along the given axis. [extrait de maximum_filter1d.__doc__]
maximum_position(input, labels=None, index=None)
mean(input, labels=None, index=None)
median(input, labels=None, index=None)
median_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)
minimum(input, labels=None, index=None)
minimum_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0) Calculate a multidimensional minimum filter. [extrait de minimum_filter.__doc__]
minimum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) Calculate a 1-D minimum filter along the given axis. [extrait de minimum_filter1d.__doc__]
minimum_position(input, labels=None, index=None)
morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
morphological_laplace(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
percentile_filter(input, percentile, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0) Calculate a multidimensional percentile filter. [extrait de percentile_filter.__doc__]
prewitt(input, axis=-1, output=None, mode='reflect', cval=0.0) Calculate a Prewitt filter. [extrait de prewitt.__doc__]
rank_filter(input, rank, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0) Calculate a multidimensional rank filter. [extrait de rank_filter.__doc__]
rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
shift(input, shift, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
sobel(input, axis=-1, output=None, mode='reflect', cval=0.0) Calculate a Sobel filter. [extrait de sobel.__doc__]
spline_filter(input, order=3, output=<class 'numpy.float64'>, mode='mirror')
spline_filter1d(input, order=3, axis=-1, output=<class 'numpy.float64'>, mode='mirror')
standard_deviation(input, labels=None, index=None)
sum(input, labels=None, index=None)
sum_labels(input, labels=None, index=None)
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None)
uniform_filter(input, size=3, output=None, mode='reflect', cval=0.0, origin=0) Multidimensional uniform filter. [extrait de uniform_filter.__doc__]
uniform_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) Calculate a 1-D uniform filter along the given axis. [extrait de uniform_filter1d.__doc__]
variance(input, labels=None, index=None)
watershed_ift(input, markers, structure=None, output=None)
white_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)
zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, grid_mode=False)