Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.ndimage »

Fonction watershed_ift - module scipy.ndimage

Signature de la fonction watershed_ift

def watershed_ift(input, markers, structure=None, output=None) 

Description

watershed_ift.__doc__

    Apply watershed from markers using image foresting transform algorithm.

    Parameters
    ----------
    input : array_like
        Input.
    markers : array_like
        Markers are points within each watershed that form the beginning
        of the process. Negative markers are considered background markers
        which are processed after the other markers.
    structure : structure element, optional
        A structuring element defining the connectivity of the object can be
        provided. If None, an element is generated with a squared
        connectivity equal to one.
    output : ndarray, optional
        An output array can optionally be provided. The same shape as input.

    Returns
    -------
    watershed_ift : ndarray
        Output.  Same shape as `input`.

    References
    ----------
    .. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image
           foresting transform: theory, algorithms, and applications",
           Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.