Module « scipy.ndimage »
Signature de la fonction correlate
def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
Description
correlate.__doc__
Multidimensional correlation.
The array is correlated with the given kernel.
Parameters
----------
input : array_like
The input array.
weights : ndarray
array of weights, same number of dimensions as input
output : array or dtype, optional
The array in which to place the output, or the dtype of the
returned array. By default an array of the same dtype as input
will be created.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the input array is extended
beyond its boundaries. Default is 'reflect'. Behavior for each valid
value is as follows:
'reflect' (`d c b a | a b c d | d c b a`)
The input is extended by reflecting about the edge of the last
pixel. This mode is also sometimes referred to as half-sample
symmetric.
'constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter.
'nearest' (`a a a a | a b c d | d d d d`)
The input is extended by replicating the last pixel.
'mirror' (`d c b | a b c d | c b a`)
The input is extended by reflecting about the center of the last
pixel. This mode is also sometimes referred to as whole-sample
symmetric.
'wrap' (`a b c d | a b c d | a b c d`)
The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode
names can also be used:
'grid-mirror'
This is a synonym for 'reflect'.
'grid-constant'
This is a synonym for 'constant'.
'grid-wrap'
This is a synonym for 'wrap'.
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : int or sequence, optional
Controls the placement of the filter on the input array's pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.
Returns
-------
result : ndarray
The result of correlation of `input` with `weights`.
See Also
--------
convolve : Convolve an image with a kernel.
Examples
--------
Correlation is the process of moving a filter mask often referred to
as kernel over the image and computing the sum of products at each location.
>>> from scipy.ndimage import correlate
>>> input_img = np.arange(25).reshape(5,5)
>>> print(input_img)
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
Define a kernel (weights) for correlation. In this example, it is for sum of
center and up, down, left and right next elements.
>>> weights = [[0, 1, 0],
... [1, 1, 1],
... [0, 1, 0]]
We can calculate a correlation result:
For example, element ``[2,2]`` is ``7 + 11 + 12 + 13 + 17 = 60``.
>>> correlate(input_img, weights)
array([[ 6, 10, 15, 20, 24],
[ 26, 30, 35, 40, 44],
[ 51, 55, 60, 65, 69],
[ 76, 80, 85, 90, 94],
[ 96, 100, 105, 110, 114]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :