Module « scipy.ndimage »
Signature de la fonction binary_hit_or_miss
def binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)
Description
binary_hit_or_miss.__doc__
Multidimensional binary hit-or-miss transform.
The hit-or-miss transform finds the locations of a given pattern
inside the input image.
Parameters
----------
input : array_like (cast to booleans)
Binary image where a pattern is to be detected.
structure1 : array_like (cast to booleans), optional
Part of the structuring element to be fitted to the foreground
(non-zero elements) of `input`. If no value is provided, a
structure of square connectivity 1 is chosen.
structure2 : array_like (cast to booleans), optional
Second part of the structuring element that has to miss completely
the foreground. If no value is provided, the complementary of
`structure1` is taken.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
origin1 : int or tuple of ints, optional
Placement of the first part of the structuring element `structure1`,
by default 0 for a centered structure.
origin2 : int or tuple of ints, optional
Placement of the second part of the structuring element `structure2`,
by default 0 for a centered structure. If a value is provided for
`origin1` and not for `origin2`, then `origin2` is set to `origin1`.
Returns
-------
binary_hit_or_miss : ndarray
Hit-or-miss transform of `input` with the given structuring
element (`structure1`, `structure2`).
See also
--------
binary_erosion
References
----------
.. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
>>> structure1
array([[1, 0, 0],
[0, 1, 1],
[0, 1, 1]])
>>> # Find the matches of structure1 in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> # Change the origin of the filter
>>> # origin1=1 is equivalent to origin1=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\
... origin1=1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :