Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
RandomState(seed=None)
Container for the slow Mersenne Twister pseudo-random number generator.
Consider using a different BitGenerator with the Generator container
instead.
`RandomState` and `Generator` expose a number of methods for generating
random numbers drawn from a variety of probability distributions. In
addition to the distribution-specific arguments, each method takes a
keyword argument `size` that defaults to ``None``. If `size` is ``None``,
then a single value is generated and returned. If `size` is an integer,
then a 1-D array filled with generated values is returned. If `size` is a
tuple, then an array with that shape is filled and returned.
**Compatibility Guarantee**
A fixed bit generator using a fixed seed and a fixed series of calls to
'RandomState' methods using the same parameters will always produce the
same results up to roundoff error except when the values were incorrect.
`RandomState` is effectively frozen and will only receive updates that
are required by changes in the the internals of Numpy. More substantial
changes, including algorithmic improvements, are reserved for
`Generator`.
Parameters
----------
seed : {None, int, array_like, BitGenerator}, optional
Random seed used to initialize the pseudo-random number generator or
an instantized BitGenerator. If an integer or array, used as a seed for
the MT19937 BitGenerator. Values can be any integer between 0 and
2**32 - 1 inclusive, an array (or other sequence) of such integers,
or ``None`` (the default). If `seed` is ``None``, then the `MT19937`
BitGenerator is initialized by reading data from ``/dev/urandom``
(or the Windows analogue) if available or seed from the clock
otherwise.
Notes
-----
The Python stdlib module "random" also contains a Mersenne Twister
pseudo-random number generator with a number of methods that are similar
to the ones available in `RandomState`. `RandomState`, besides being
NumPy-aware, has the advantage that it provides a much larger number
of probability distributions to choose from.
See Also
--------
Generator
MT19937
numpy.random.BitGenerator
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :