Module « numpy.random »
Signature de la fonction triangular
Description
triangular.__doc__
triangular(left, mode, right, size=None)
Draw samples from the triangular distribution over the
interval ``[left, right]``.
The triangular distribution is a continuous probability
distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters
directly define the shape of the pdf.
.. note::
New code should use the ``triangular`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
left : float or array_like of floats
Lower limit.
mode : float or array_like of floats
The value where the peak of the distribution occurs.
The value must fulfill the condition ``left <= mode <= right``.
right : float or array_like of floats
Upper limit, must be larger than `left`.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``left``, ``mode``, and ``right``
are all scalars. Otherwise, ``np.broadcast(left, mode, right).size``
samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized triangular distribution.
See Also
--------
Generator.triangular: which should be used for new code.
Notes
-----
The probability density function for the triangular distribution is
.. math:: P(x;l, m, r) = \begin{cases}
\frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
\frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
0& \text{otherwise}.
\end{cases}
The triangular distribution is often used in ill-defined
problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used
in simulations.
References
----------
.. [1] Wikipedia, "Triangular distribution"
https://en.wikipedia.org/wiki/Triangular_distribution
Examples
--------
Draw values from the distribution and plot the histogram:
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :