Module « numpy.random »
Signature de la fonction logistic
Description
logistic.__doc__
logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.
Samples are drawn from a logistic distribution with specified
parameters, loc (location or mean, also median), and scale (>0).
.. note::
New code should use the ``logistic`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
loc : float or array_like of floats, optional
Parameter of the distribution. Default is 0.
scale : float or array_like of floats, optional
Parameter of the distribution. Must be non-negative.
Default is 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``loc`` and ``scale`` are both scalars.
Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized logistic distribution.
See Also
--------
scipy.stats.logistic : probability density function, distribution or
cumulative density function, etc.
Generator.logistic: which should be used for new code.
Notes
-----
The probability density for the Logistic distribution is
.. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},
where :math:`\mu` = location and :math:`s` = scale.
The Logistic distribution is used in Extreme Value problems where it
can act as a mixture of Gumbel distributions, in Epidemiology, and by
the World Chess Federation (FIDE) where it is used in the Elo ranking
system, assuming the performance of each player is a logistically
distributed random variable.
References
----------
.. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
Extreme Values, from Insurance, Finance, Hydrology and Other
Fields," Birkhauser Verlag, Basel, pp 132-133.
.. [2] Weisstein, Eric W. "Logistic Distribution." From
MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html
.. [3] Wikipedia, "Logistic-distribution",
https://en.wikipedia.org/wiki/Logistic_distribution
Examples
--------
Draw samples from the distribution:
>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)
# plot against distribution
>>> def logist(x, loc, scale):
... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> lgst_val = logist(bins, loc, scale)
>>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :