Module « numpy.random »
Signature de la fonction pareto
Description
pareto.__doc__
pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with
specified shape.
The Lomax or Pareto II distribution is a shifted Pareto
distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and
multiplying by the scale parameter ``m`` (see Notes). The
smallest value of the Lomax distribution is zero while for the
classical Pareto distribution it is ``mu``, where the standard
Pareto distribution has location ``mu = 1``. Lomax can also
be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set
to one and the location set to zero.
The Pareto distribution must be greater than zero, and is
unbounded above. It is also known as the "80-20 rule". In
this distribution, 80 percent of the weights are in the lowest
20 percent of the range, while the other 20 percent fill the
remaining 80 percent of the range.
.. note::
New code should use the ``pareto`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be positive.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized Pareto distribution.
See Also
--------
scipy.stats.lomax : probability density function, distribution or
cumulative density function, etc.
scipy.stats.genpareto : probability density function, distribution or
cumulative density function, etc.
Generator.pareto: which should be used for new code.
Notes
-----
The probability density for the Pareto distribution is
.. math:: p(x) = \frac{am^a}{x^{a+1}}
where :math:`a` is the shape and :math:`m` the scale.
The Pareto distribution, named after the Italian economist
Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of
economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe
the distribution of wealth in an economy. It has also found
use in insurance, web page access statistics, oil field sizes,
and many other problems, including the download frequency for
projects in Sourceforge [1]_. It is one of the so-called
"fat-tailed" distributions.
References
----------
.. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.
.. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
.. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.
.. [4] Wikipedia, "Pareto distribution",
https://en.wikipedia.org/wiki/Pareto_distribution
Examples
--------
Draw samples from the distribution:
>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m
Display the histogram of the samples, along with the probability
density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :