Module « numpy.random »
Signature de la fonction randn
Description
randn.__doc__
randn(d0, d1, ..., dn)
Return a sample (or samples) from the "standard normal" distribution.
.. note::
This is a convenience function for users porting code from Matlab,
and wraps `standard_normal`. That function takes a
tuple to specify the size of the output, which is consistent with
other NumPy functions like `numpy.zeros` and `numpy.ones`.
.. note::
New code should use the ``standard_normal`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
If positive int_like arguments are provided, `randn` generates an array
of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1. A single float randomly sampled
from the distribution is returned if no argument is provided.
Parameters
----------
d0, d1, ..., dn : int, optional
The dimensions of the returned array, must be non-negative.
If no argument is given a single Python float is returned.
Returns
-------
Z : ndarray or float
A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.
See Also
--------
standard_normal : Similar, but takes a tuple as its argument.
normal : Also accepts mu and sigma arguments.
Generator.standard_normal: which should be used for new code.
Notes
-----
For random samples from :math:`N(\mu, \sigma^2)`, use:
``sigma * np.random.randn(...) + mu``
Examples
--------
>>> np.random.randn()
2.1923875335537315 # random
Two-by-four array of samples from N(3, 6.25):
>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :