Module « numpy.random »
Signature de la fonction power
Description
power.__doc__
power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.
Also known as the power function distribution.
.. note::
New code should use the ``power`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
a : float or array_like of floats
Parameter of the distribution. Must be non-negative.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized power distribution.
Raises
------
ValueError
If a < 1.
See Also
--------
Generator.power: which should be used for new code.
Notes
-----
The probability density function is
.. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.
It is used, for example, in modeling the over-reporting of insurance
claims.
References
----------
.. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
in economics and actuarial sciences", Wiley, 2003.
.. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions", National Institute of Standards and Technology
Handbook Series, June 2003.
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
Examples
--------
Draw samples from the distribution:
>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()
Compare the power function distribution to the inverse of the Pareto.
>>> from scipy import stats # doctest: +SKIP
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP
>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('np.random.power(5)')
>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of 1 + np.random.pareto(5)')
>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of stats.pareto(5)')
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :