Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.
.. note::
New code should use the ``standard_cauchy`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
The drawn samples.
See Also
--------
Generator.standard_cauchy: which should be used for new code.
Notes
-----
The probability density function for the full Cauchy distribution is
.. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
(\frac{x-x_0}{\gamma})^2 \bigr] }
and the Standard Cauchy distribution just sets :math:`x_0=0` and
:math:`\gamma=1`
The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.
When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.
References
----------
.. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
Distribution",
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
.. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html
.. [3] Wikipedia, "Cauchy distribution"
https://en.wikipedia.org/wiki/Cauchy_distribution
Examples
--------
Draw samples and plot the distribution:
>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :