Module « numpy.random »
Signature de la fonction uniform
Description
uniform.__doc__
uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval
``[low, high)`` (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by `uniform`.
.. note::
New code should use the ``uniform`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
low : float or array_like of floats, optional
Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.
high : float or array_like of floats
Upper boundary of the output interval. All values generated will be
less than or equal to high. The default value is 1.0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``low`` and ``high`` are both scalars.
Otherwise, ``np.broadcast(low, high).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized uniform distribution.
See Also
--------
randint : Discrete uniform distribution, yielding integers.
random_integers : Discrete uniform distribution over the closed
interval ``[low, high]``.
random_sample : Floats uniformly distributed over ``[0, 1)``.
random : Alias for `random_sample`.
rand : Convenience function that accepts dimensions as input, e.g.,
``rand(2,2)`` would generate a 2-by-2 array of floats,
uniformly distributed over ``[0, 1)``.
Generator.uniform: which should be used for new code.
Notes
-----
The probability density function of the uniform distribution is
.. math:: p(x) = \frac{1}{b - a}
anywhere within the interval ``[a, b)``, and zero elsewhere.
When ``high`` == ``low``, values of ``low`` will be returned.
If ``high`` < ``low``, the results are officially undefined
and may eventually raise an error, i.e. do not rely on this
function to behave when passed arguments satisfying that
inequality condition. The ``high`` limit may be included in the
returned array of floats due to floating-point rounding in the
equation ``low + (high-low) * random_sample()``. For example:
>>> x = np.float32(5*0.99999999)
>>> x
5.0
Examples
--------
Draw samples from the distribution:
>>> s = np.random.uniform(-1,0,1000)
All values are within the given interval:
>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True
Display the histogram of the samples, along with the
probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :