Classe « RandomState »
Signature de la méthode noncentral_chisquare
Description
noncentral_chisquare.__doc__
noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.
The noncentral :math:`\chi^2` distribution is a generalization of
the :math:`\chi^2` distribution.
.. note::
New code should use the ``noncentral_chisquare`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
df : float or array_like of floats
Degrees of freedom, must be > 0.
.. versionchanged:: 1.10.0
Earlier NumPy versions required dfnum > 1.
nonc : float or array_like of floats
Non-centrality, must be non-negative.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``df`` and ``nonc`` are both scalars.
Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized noncentral chi-square distribution.
See Also
--------
Generator.noncentral_chisquare: which should be used for new code.
Notes
-----
The probability density function for the noncentral Chi-square
distribution is
.. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
P_{Y_{df+2i}}(x),
where :math:`Y_{q}` is the Chi-square with q degrees of freedom.
References
----------
.. [1] Wikipedia, "Noncentral chi-squared distribution"
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
Examples
--------
Draw values from the distribution and plot the histogram
>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()
Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()
Demonstrate how large values of non-centrality lead to a more symmetric
distribution.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :