Classe « RandomState »
Signature de la méthode noncentral_f
Description
noncentral_f.__doc__
noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters,
`dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
freedom in denominator), where both parameters > 1.
`nonc` is the non-centrality parameter.
.. note::
New code should use the ``noncentral_f`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
dfnum : float or array_like of floats
Numerator degrees of freedom, must be > 0.
.. versionchanged:: 1.14.0
Earlier NumPy versions required dfnum > 1.
dfden : float or array_like of floats
Denominator degrees of freedom, must be > 0.
nonc : float or array_like of floats
Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized noncentral Fisher distribution.
See Also
--------
Generator.noncentral_f: which should be used for new code.
Notes
-----
When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.
References
----------
.. [1] Weisstein, Eric W. "Noncentral F-Distribution."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html
.. [2] Wikipedia, "Noncentral F-distribution",
https://en.wikipedia.org/wiki/Noncentral_F-distribution
Examples
--------
In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We'll plot the two probability
distributions for comparison.
>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :