Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Classe « RandomState »
Signature de la méthode multivariate_normal
def multivariate_normal(self, mean, cov, size=None, check_valid='warn', tol=1e-08)
Description
help(RandomState.multivariate_normal)
multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)
Draw random samples from a multivariate normal distribution.
The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or "center") and variance (standard deviation, or "width,"
squared) of the one-dimensional normal distribution.
.. note::
New code should use the
`~numpy.random.Generator.multivariate_normal`
method of a `~numpy.random.Generator` instance instead;
please see the :ref:`random-quick-start`.
Parameters
----------
mean : 1-D array_like, of length N
Mean of the N-dimensional distribution.
cov : 2-D array_like, of shape (N, N)
Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.
size : int or tuple of ints, optional
Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because
each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
If no shape is specified, a single (`N`-D) sample is returned.
check_valid : { 'warn', 'raise', 'ignore' }, optional
Behavior when the covariance matrix is not positive semidefinite.
tol : float, optional
Tolerance when checking the singular values in covariance matrix.
cov is cast to double before the check.
Returns
-------
out : ndarray
The drawn samples, of shape *size*, if that was provided. If not,
the shape is ``(N,)``.
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
See Also
--------
random.Generator.multivariate_normal: which should be used for new code.
Notes
-----
The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.
Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix
element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
"spread").
Instead of specifying the full covariance matrix, popular
approximations include:
- Spherical covariance (`cov` is a multiple of the identity matrix)
- Diagonal covariance (`cov` has non-negative elements, and only on
the diagonal)
This geometrical property can be seen in two dimensions by plotting
generated data-points:
>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance
Diagonal covariance means that points are oriented along x or y-axis:
>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()
Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.
References
----------
.. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
Processes," 3rd ed., New York: McGraw-Hill, 1991.
.. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
Classification," 2nd ed., New York: Wiley, 2001.
Examples
--------
>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)
Here we generate 800 samples from the bivariate normal distribution
with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The
expected variances of the first and second components of the sample
are 6 and 3.5, respectively, and the expected correlation
coefficient is -3/sqrt(6*3.5) ≈ -0.65465.
>>> cov = np.array([[6, -3], [-3, 3.5]])
>>> pts = np.random.multivariate_normal([0, 0], cov, size=800)
Check that the mean, covariance, and correlation coefficient of the
sample are close to the expected values:
>>> pts.mean(axis=0)
array([ 0.0326911 , -0.01280782]) # may vary
>>> np.cov(pts.T)
array([[ 5.96202397, -2.85602287],
[-2.85602287, 3.47613949]]) # may vary
>>> np.corrcoef(pts.T)[0, 1]
-0.6273591314603949 # may vary
We can visualize this data with a scatter plot. The orientation
of the point cloud illustrates the negative correlation of the
components of this sample.
>>> import matplotlib.pyplot as plt
>>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :