Classe « RandomState »
Signature de la méthode gamma
Description
gamma.__doc__
gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters,
`shape` (sometimes designated "k") and `scale` (sometimes designated
"theta"), where both parameters are > 0.
.. note::
New code should use the ``gamma`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
shape : float or array_like of floats
The shape of the gamma distribution. Must be non-negative.
scale : float or array_like of floats, optional
The scale of the gamma distribution. Must be non-negative.
Default is equal to 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``shape`` and ``scale`` are both scalars.
Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized gamma distribution.
See Also
--------
scipy.stats.gamma : probability density function, distribution or
cumulative density function, etc.
Generator.gamma: which should be used for new code.
Notes
-----
The probability density for the Gamma distribution is
.. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},
where :math:`k` is the shape and :math:`\theta` the scale,
and :math:`\Gamma` is the Gamma function.
The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.
References
----------
.. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html
.. [2] Wikipedia, "Gamma distribution",
https://en.wikipedia.org/wiki/Gamma_distribution
Examples
--------
Draw samples from the distribution:
>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :