Classe « RandomState »
Signature de la méthode lognormal
Description
lognormal.__doc__
lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.
.. note::
New code should use the ``lognormal`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
mean : float or array_like of floats, optional
Mean value of the underlying normal distribution. Default is 0.
sigma : float or array_like of floats, optional
Standard deviation of the underlying normal distribution. Must be
non-negative. Default is 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``mean`` and ``sigma`` are both scalars.
Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized log-normal distribution.
See Also
--------
scipy.stats.lognorm : probability density function, distribution,
cumulative density function, etc.
Generator.lognormal: which should be used for new code.
Notes
-----
A variable `x` has a log-normal distribution if `log(x)` is normally
distributed. The probability density function for the log-normal
distribution is:
.. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}
where :math:`\mu` is the mean and :math:`\sigma` is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the *product*
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
*sum* of a large number of independent, identically-distributed
variables.
References
----------
.. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
Distributions across the Sciences: Keys and Clues,"
BioScience, Vol. 51, No. 5, May, 2001.
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
.. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.
Examples
--------
Draw samples from the distribution:
>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')
>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))
>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()
Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density
function.
>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.standard_normal(100)
... b.append(np.product(a))
>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))
>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))
>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :