Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Classe « RandomState »
Signature de la méthode standard_normal
def standard_normal(self, size=None)
Description
help(RandomState.standard_normal)
standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).
.. note::
New code should use the
`~numpy.random.Generator.standard_normal`
method of a `~numpy.random.Generator` instance instead;
please see the :ref:`random-quick-start`.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : float or ndarray
A floating-point array of shape ``size`` of drawn samples, or a
single sample if ``size`` was not specified.
See Also
--------
normal :
Equivalent function with additional ``loc`` and ``scale`` arguments
for setting the mean and standard deviation.
random.Generator.standard_normal: which should be used for new code.
Notes
-----
For random samples from the normal distribution with mean ``mu`` and
standard deviation ``sigma``, use one of::
mu + sigma * np.random.standard_normal(size=...)
np.random.normal(mu, sigma, size=...)
Examples
--------
>>> np.random.standard_normal()
2.1923875335537315 #random
>>> s = np.random.standard_normal(8000)
>>> s
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
-0.38672696, -0.4685006 ]) # random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)
Two-by-four array of samples from the normal distribution with
mean 3 and standard deviation 2.5:
>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :