Classe « RandomState »
Signature de la méthode poisson
Description
poisson.__doc__
poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution
for large N.
.. note::
New code should use the ``poisson`` method of a ``default_rng()``
instance instead; please see the :ref:`random-quick-start`.
Parameters
----------
lam : float or array_like of floats
Expectation of interval, must be >= 0. A sequence of expectation
intervals must be broadcastable over the requested size.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``lam`` is a scalar. Otherwise,
``np.array(lam).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the parameterized Poisson distribution.
See Also
--------
Generator.poisson: which should be used for new code.
Notes
-----
The Poisson distribution
.. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}
For events with an expected separation :math:`\lambda` the Poisson
distribution :math:`f(k; \lambda)` describes the probability of
:math:`k` events occurring within the observed
interval :math:`\lambda`.
Because the output is limited to the range of the C int64 type, a
ValueError is raised when `lam` is within 10 sigma of the maximum
representable value.
References
----------
.. [1] Weisstein, Eric W. "Poisson Distribution."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/PoissonDistribution.html
.. [2] Wikipedia, "Poisson distribution",
https://en.wikipedia.org/wiki/Poisson_distribution
Examples
--------
Draw samples from the distribution:
>>> import numpy as np
>>> s = np.random.poisson(5, 10000)
Display histogram of the sample:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()
Draw each 100 values for lambda 100 and 500:
>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :