Module « scipy.interpolate »
Classe « BSpline »
Informations générales
Héritage
builtins.object
BSpline
Définition
class BSpline(builtins.object):
Description [extrait de BSpline.__doc__]
Univariate spline in the B-spline basis.
.. math::
S(x) = \sum_{j=0}^{n-1} c_j B_{j, k; t}(x)
where :math:`B_{j, k; t}` are B-spline basis functions of degree `k`
and knots `t`.
Parameters
----------
t : ndarray, shape (n+k+1,)
knots
c : ndarray, shape (>=n, ...)
spline coefficients
k : int
B-spline degree
extrapolate : bool or 'periodic', optional
whether to extrapolate beyond the base interval, ``t[k] .. t[n]``,
or to return nans.
If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.
If 'periodic', periodic extrapolation is used.
Default is True.
axis : int, optional
Interpolation axis. Default is zero.
Attributes
----------
t : ndarray
knot vector
c : ndarray
spline coefficients
k : int
spline degree
extrapolate : bool
If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.
axis : int
Interpolation axis.
tck : tuple
A read-only equivalent of ``(self.t, self.c, self.k)``
Methods
-------
__call__
basis_element
derivative
antiderivative
integrate
construct_fast
Notes
-----
B-spline basis elements are defined via
.. math::
B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise $0$,}
B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
+ \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)
**Implementation details**
- At least ``k+1`` coefficients are required for a spline of degree `k`,
so that ``n >= k+1``. Additional coefficients, ``c[j]`` with
``j > n``, are ignored.
- B-spline basis elements of degree `k` form a partition of unity on the
*base interval*, ``t[k] <= x <= t[n]``.
Examples
--------
Translating the recursive definition of B-splines into Python code, we have:
>>> def B(x, k, i, t):
... if k == 0:
... return 1.0 if t[i] <= x < t[i+1] else 0.0
... if t[i+k] == t[i]:
... c1 = 0.0
... else:
... c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
... if t[i+k+1] == t[i+1]:
... c2 = 0.0
... else:
... c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
... return c1 + c2
>>> def bspline(x, t, c, k):
... n = len(t) - k - 1
... assert (n >= k+1) and (len(c) >= n)
... return sum(c[i] * B(x, k, i, t) for i in range(n))
Note that this is an inefficient (if straightforward) way to
evaluate B-splines --- this spline class does it in an equivalent,
but much more efficient way.
Here we construct a quadratic spline function on the base interval
``2 <= x <= 4`` and compare with the naive way of evaluating the spline:
>>> from scipy.interpolate import BSpline
>>> k = 2
>>> t = [0, 1, 2, 3, 4, 5, 6]
>>> c = [-1, 2, 0, -1]
>>> spl = BSpline(t, c, k)
>>> spl(2.5)
array(1.375)
>>> bspline(2.5, t, c, k)
1.375
Note that outside of the base interval results differ. This is because
`BSpline` extrapolates the first and last polynomial pieces of B-spline
functions active on the base interval.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> xx = np.linspace(1.5, 4.5, 50)
>>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label='naive')
>>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
>>> ax.grid(True)
>>> ax.legend(loc='best')
>>> plt.show()
References
----------
.. [1] Tom Lyche and Knut Morken, Spline methods,
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
.. [2] Carl de Boor, A practical guide to splines, Springer, 2001.
Constructeur(s)
Liste des propriétés
tck | Equivalent to ``(self.t, self.c, self.k)`` (read-only). [extrait de __doc__] |
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__call__(self, x, nu=0, extrapolate=None) |
|
antiderivative(self, nu=1) |
Return a B-spline representing the antiderivative. [extrait de antiderivative.__doc__] |
basis_element(t, extrapolate=True) |
Return a B-spline basis element ``B(x | t[0], ..., t[k+1])``. [extrait de basis_element.__doc__] |
construct_fast(t, c, k, extrapolate=True, axis=0) |
Construct a spline without making checks. [extrait de construct_fast.__doc__] |
derivative(self, nu=1) |
Return a B-spline representing the derivative. [extrait de derivative.__doc__] |
integrate(self, a, b, extrapolate=None) |
Compute a definite integral of the spline. [extrait de integrate.__doc__] |
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__init_subclass__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__,
__subclasshook__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :