Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.interpolate »

Classe « BSpline »

Informations générales

Héritage

builtins.object
    BSpline

Définition

class BSpline(builtins.object):

Description [extrait de BSpline.__doc__]

Univariate spline in the B-spline basis.

    .. math::

        S(x) = \sum_{j=0}^{n-1} c_j  B_{j, k; t}(x)

    where :math:`B_{j, k; t}` are B-spline basis functions of degree `k`
    and knots `t`.

    Parameters
    ----------
    t : ndarray, shape (n+k+1,)
        knots
    c : ndarray, shape (>=n, ...)
        spline coefficients
    k : int
        B-spline degree
    extrapolate : bool or 'periodic', optional
        whether to extrapolate beyond the base interval, ``t[k] .. t[n]``,
        or to return nans.
        If True, extrapolates the first and last polynomial pieces of b-spline
        functions active on the base interval.
        If 'periodic', periodic extrapolation is used.
        Default is True.
    axis : int, optional
        Interpolation axis. Default is zero.

    Attributes
    ----------
    t : ndarray
        knot vector
    c : ndarray
        spline coefficients
    k : int
        spline degree
    extrapolate : bool
        If True, extrapolates the first and last polynomial pieces of b-spline
        functions active on the base interval.
    axis : int
        Interpolation axis.
    tck : tuple
        A read-only equivalent of ``(self.t, self.c, self.k)``

    Methods
    -------
    __call__
    basis_element
    derivative
    antiderivative
    integrate
    construct_fast

    Notes
    -----
    B-spline basis elements are defined via

    .. math::

        B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise $0$,}

        B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
                 + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)

    **Implementation details**

    - At least ``k+1`` coefficients are required for a spline of degree `k`,
      so that ``n >= k+1``. Additional coefficients, ``c[j]`` with
      ``j > n``, are ignored.

    - B-spline basis elements of degree `k` form a partition of unity on the
      *base interval*, ``t[k] <= x <= t[n]``.


    Examples
    --------

    Translating the recursive definition of B-splines into Python code, we have:

    >>> def B(x, k, i, t):
    ...    if k == 0:
    ...       return 1.0 if t[i] <= x < t[i+1] else 0.0
    ...    if t[i+k] == t[i]:
    ...       c1 = 0.0
    ...    else:
    ...       c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
    ...    if t[i+k+1] == t[i+1]:
    ...       c2 = 0.0
    ...    else:
    ...       c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
    ...    return c1 + c2

    >>> def bspline(x, t, c, k):
    ...    n = len(t) - k - 1
    ...    assert (n >= k+1) and (len(c) >= n)
    ...    return sum(c[i] * B(x, k, i, t) for i in range(n))

    Note that this is an inefficient (if straightforward) way to
    evaluate B-splines --- this spline class does it in an equivalent,
    but much more efficient way.

    Here we construct a quadratic spline function on the base interval
    ``2 <= x <= 4`` and compare with the naive way of evaluating the spline:

    >>> from scipy.interpolate import BSpline
    >>> k = 2
    >>> t = [0, 1, 2, 3, 4, 5, 6]
    >>> c = [-1, 2, 0, -1]
    >>> spl = BSpline(t, c, k)
    >>> spl(2.5)
    array(1.375)
    >>> bspline(2.5, t, c, k)
    1.375

    Note that outside of the base interval results differ. This is because
    `BSpline` extrapolates the first and last polynomial pieces of B-spline
    functions active on the base interval.

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> xx = np.linspace(1.5, 4.5, 50)
    >>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label='naive')
    >>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
    >>> ax.grid(True)
    >>> ax.legend(loc='best')
    >>> plt.show()


    References
    ----------
    .. [1] Tom Lyche and Knut Morken, Spline methods,
        http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
    .. [2] Carl de Boor, A practical guide to splines, Springer, 2001.

    

Constructeur(s)

Signature du constructeur Description
__init__(self, t, c, k, extrapolate=True, axis=0)

Liste des propriétés

Nom de la propriétéDescription
tckEquivalent to ``(self.t, self.c, self.k)`` (read-only). [extrait de __doc__]

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__call__(self, x, nu=0, extrapolate=None)
antiderivative(self, nu=1) Return a B-spline representing the antiderivative. [extrait de antiderivative.__doc__]
basis_element(t, extrapolate=True) Return a B-spline basis element ``B(x | t[0], ..., t[k+1])``. [extrait de basis_element.__doc__]
construct_fast(t, c, k, extrapolate=True, axis=0) Construct a spline without making checks. [extrait de construct_fast.__doc__]
derivative(self, nu=1) Return a B-spline representing the derivative. [extrait de derivative.__doc__]
integrate(self, a, b, extrapolate=None) Compute a definite integral of the spline. [extrait de integrate.__doc__]

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __init_subclass__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__