Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Description [extrait de Akima1DInterpolator.__doc__]
Akima interpolator
Fit piecewise cubic polynomials, given vectors x and y. The interpolation
method by Akima uses a continuously differentiable sub-spline built from
piecewise cubic polynomials. The resultant curve passes through the given
data points and will appear smooth and natural.
Parameters
----------
x : ndarray, shape (m, )
1-D array of monotonically increasing real values.
y : ndarray, shape (m, ...)
N-D array of real values. The length of ``y`` along the first axis
must be equal to the length of ``x``.
axis : int, optional
Specifies the axis of ``y`` along which to interpolate. Interpolation
defaults to the first axis of ``y``.
Methods
-------
__call__
derivative
antiderivative
roots
See Also
--------
PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
CubicSpline : Cubic spline data interpolator.
PPoly : Piecewise polynomial in terms of coefficients and breakpoints
Notes
-----
.. versionadded:: 0.14
Use only for precise data, as the fitted curve passes through the given
points exactly. This routine is useful for plotting a pleasingly smooth
curve through a few given points for purposes of plotting.
References
----------
[1] A new method of interpolation and smooth curve fitting based
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4),
589-602.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :