Module « scipy.interpolate »
Signature de la fonction splantider
def splantider(tck, n=1)
Description
splantider.__doc__
Compute the spline for the antiderivative (integral) of a given spline.
Parameters
----------
tck : BSpline instance or a tuple of (t, c, k)
Spline whose antiderivative to compute
n : int, optional
Order of antiderivative to evaluate. Default: 1
Returns
-------
BSpline instance or a tuple of (t2, c2, k2)
Spline of order k2=k+n representing the antiderivative of the input
spline.
A tuple is returned iff the input argument `tck` is a tuple, otherwise
a BSpline object is constructed and returned.
See Also
--------
splder, splev, spalde
BSpline
Notes
-----
The `splder` function is the inverse operation of this function.
Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo
rounding error.
.. versionadded:: 0.13.0
Examples
--------
>>> from scipy.interpolate import splrep, splder, splantider, splev
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = splrep(x, y)
The derivative is the inverse operation of the antiderivative,
although some floating point error accumulates:
>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
(array(2.1565429877197317), array(2.1565429877201865))
Antiderivative can be used to evaluate definite integrals:
>>> ispl = splantider(spl)
>>> splev(np.pi/2, ispl) - splev(0, ispl)
2.2572053588768486
This is indeed an approximation to the complete elliptic integral
:math:`K(m) = \int_0^{\pi/2} [1 - m\sin^2 x]^{-1/2} dx`:
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :