Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Description [extrait de BarycentricInterpolator.__doc__]
The interpolating polynomial for a set of points
Constructs a polynomial that passes through a given set of points.
Allows evaluation of the polynomial, efficient changing of the y
values to be interpolated, and updating by adding more x values.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial.
The values yi need to be provided before the function is
evaluated, but none of the preprocessing depends on them, so rapid
updates are possible.
Parameters
----------
xi : array_like
1-D array of x coordinates of the points the polynomial
should pass through
yi : array_like, optional
The y coordinates of the points the polynomial should pass through.
If None, the y values will be supplied later via the `set_y` method.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes
-----
This class uses a "barycentric interpolation" method that treats
the problem as a special case of rational function interpolation.
This algorithm is quite stable, numerically, but even in a world of
exact computation, unless the x coordinates are chosen very
carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process
due to the Runge phenomenon.
Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :