Module « scipy.interpolate »
Classe « RBFInterpolator »
Informations générales
Héritage
builtins.object
RBFInterpolator
Définition
class RBFInterpolator(builtins.object):
Description [extrait de RBFInterpolator.__doc__]
Radial basis function (RBF) interpolation in N dimensions.
Parameters
----------
y : (P, N) array_like
Data point coordinates.
d : (P, ...) array_like
Data values at `y`.
neighbors : int, optional
If specified, the value of the interpolant at each evaluation point
will be computed using only this many nearest data points. All the data
points are used by default.
smoothing : float or (P,) array_like, optional
Smoothing parameter. The interpolant perfectly fits the data when this
is set to 0. For large values, the interpolant approaches a least
squares fit of a polynomial with the specified degree. Default is 0.
kernel : str, optional
Type of RBF. This should be one of
- 'linear' : ``-r``
- 'thin_plate_spline' : ``r**2 * log(r)``
- 'cubic' : ``r**3``
- 'quintic' : ``-r**5``
- 'multiquadric' : ``-sqrt(1 + r**2)``
- 'inverse_multiquadric' : ``1/sqrt(1 + r**2)``
- 'inverse_quadratic' : ``1/(1 + r**2)``
- 'gaussian' : ``exp(-r**2)``
Default is 'thin_plate_spline'.
epsilon : float, optional
Shape parameter that scales the input to the RBF. If `kernel` is
'linear', 'thin_plate_spline', 'cubic', or 'quintic', this defaults to
1 and can be ignored because it has the same effect as scaling the
smoothing parameter. Otherwise, this must be specified.
degree : int, optional
Degree of the added polynomial. For some RBFs the interpolant may not
be well-posed if the polynomial degree is too small. Those RBFs and
their corresponding minimum degrees are
- 'multiquadric' : 0
- 'linear' : 0
- 'thin_plate_spline' : 1
- 'cubic' : 1
- 'quintic' : 2
The default value is the minimum degree for `kernel` or 0 if there is
no minimum degree. Set this to -1 for no added polynomial.
Notes
-----
An RBF is a scalar valued function in N-dimensional space whose value at
:math:`x` can be expressed in terms of :math:`r=||x - c||`, where :math:`c`
is the center of the RBF.
An RBF interpolant for the vector of data values :math:`d`, which are from
locations :math:`y`, is a linear combination of RBFs centered at :math:`y`
plus a polynomial with a specified degree. The RBF interpolant is written
as
.. math::
f(x) = K(x, y) a + P(x) b,
where :math:`K(x, y)` is a matrix of RBFs with centers at :math:`y`
evaluated at the points :math:`x`, and :math:`P(x)` is a matrix of
monomials, which span polynomials with the specified degree, evaluated at
:math:`x`. The coefficients :math:`a` and :math:`b` are the solution to the
linear equations
.. math::
(K(y, y) + \lambda I) a + P(y) b = d
and
.. math::
P(y)^T a = 0,
where :math:`\lambda` is a non-negative smoothing parameter that controls
how well we want to fit the data. The data are fit exactly when the
smoothing parameter is 0.
The above system is uniquely solvable if the following requirements are
met:
- :math:`P(y)` must have full column rank. :math:`P(y)` always has full
column rank when `degree` is -1 or 0. When `degree` is 1,
:math:`P(y)` has full column rank if the data point locations are not
all collinear (N=2), coplanar (N=3), etc.
- If `kernel` is 'multiquadric', 'linear', 'thin_plate_spline',
'cubic', or 'quintic', then `degree` must not be lower than the
minimum value listed above.
- If `smoothing` is 0, then each data point location must be distinct.
When using an RBF that is not scale invariant ('multiquadric',
'inverse_multiquadric', 'inverse_quadratic', or 'gaussian'), an appropriate
shape parameter must be chosen (e.g., through cross validation). Smaller
values for the shape parameter correspond to wider RBFs. The problem can
become ill-conditioned or singular when the shape parameter is too small.
The memory required to solve for the RBF interpolation coefficients
increases quadratically with the number of data points, which can become
impractical when interpolating more than about a thousand data points.
To overcome memory limitations for large interpolation problems, the
`neighbors` argument can be specified to compute an RBF interpolant for
each evaluation point using only the nearest data points.
.. versionadded:: 1.7.0
See Also
--------
NearestNDInterpolator
LinearNDInterpolator
CloughTocher2DInterpolator
References
----------
.. [1] Fasshauer, G., 2007. Meshfree Approximation Methods with Matlab.
World Scientific Publishing Co.
.. [2] http://amadeus.math.iit.edu/~fass/603_ch3.pdf
.. [3] Wahba, G., 1990. Spline Models for Observational Data. SIAM.
.. [4] http://pages.stat.wisc.edu/~wahba/stat860public/lect/lect8/lect8.pdf
Examples
--------
Demonstrate interpolating scattered data to a grid in 2-D.
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import RBFInterpolator
>>> from scipy.stats.qmc import Halton
>>> rng = np.random.default_rng()
>>> xobs = 2*Halton(2, seed=rng).random(100) - 1
>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1))
>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j]
>>> xflat = xgrid.reshape(2, -1).T
>>> yflat = RBFInterpolator(xobs, yobs)(xflat)
>>> ygrid = yflat.reshape(50, 50)
>>> fig, ax = plt.subplots()
>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud')
>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25)
>>> fig.colorbar(p)
>>> plt.show()
Constructeur(s)
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__init_subclass__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__,
__subclasshook__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :