Module « scipy.interpolate »
Classe « InterpolatedUnivariateSpline »
Informations générales
Héritage
builtins.object
UnivariateSpline
InterpolatedUnivariateSpline
Définition
class InterpolatedUnivariateSpline(UnivariateSpline):
Description [extrait de InterpolatedUnivariateSpline.__doc__]
1-D interpolating spline for a given set of data points.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
Spline function passes through all provided points. Equivalent to
`UnivariateSpline` with s=0.
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be strictly increasing
y : (N,) array_like
input dimension of data points
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default),
weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox=[x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
See Also
--------
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
LSQUnivariateSpline :
a spline for which knots are user-selected
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
splrep :
a function to find the B-spline representation of a 1-D curve
splev :
a function to evaluate a B-spline or its derivatives
sproot :
a function to find the roots of a cubic B-spline
splint :
a function to evaluate the definite integral of a B-spline between two
given points
spalde :
a function to evaluate all derivatives of a B-spline
Notes
-----
The number of data points must be larger than the spline degree `k`.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()
Notice that the ``spl(x)`` interpolates `y`:
>>> spl.get_residual()
0.0
Constructeur(s)
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe UnivariateSpline
__call__, __init_subclass__, __subclasshook__, antiderivative, derivative, derivatives, get_coeffs, get_knots, get_residual, integral, roots, set_smoothing_factor, validate_input
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :