Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Evaluate all derivatives of a B-spline.
Given the knots and coefficients of a cubic B-spline compute all
derivatives up to order k at a point (or set of points).
Parameters
----------
x : array_like
A point or a set of points at which to evaluate the derivatives.
Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`.
tck : tuple
A tuple ``(t, c, k)``, containing the vector of knots, the B-spline
coefficients, and the degree of the spline (see `splev`).
Returns
-------
results : {ndarray, list of ndarrays}
An array (or a list of arrays) containing all derivatives
up to order k inclusive for each point `x`.
See Also
--------
splprep, splrep, splint, sproot, splev, bisplrep, bisplev,
BSpline
References
----------
.. [1] C. de Boor: On calculating with b-splines, J. Approximation Theory
6 (1972) 50-62.
.. [2] M. G. Cox : The numerical evaluation of b-splines, J. Inst. Maths
applics 10 (1972) 134-149.
.. [3] P. Dierckx : Curve and surface fitting with splines, Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :