Module « scipy.interpolate »
Signature de la fonction splprep
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, full_output=0, nest=None, per=0, quiet=1)
Description
splprep.__doc__
Find the B-spline representation of an N-D curve.
Given a list of N rank-1 arrays, `x`, which represent a curve in
N-D space parametrized by `u`, find a smooth approximating
spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
Parameters
----------
x : array_like
A list of sample vector arrays representing the curve.
w : array_like, optional
Strictly positive rank-1 array of weights the same length as `x[0]`.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the `x` values have standard-deviation given by
the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``.
u : array_like, optional
An array of parameter values. If not given, these values are
calculated automatically as ``M = len(x[0])``, where
v[0] = 0
v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`)
u[i] = v[i] / v[M-1]
ub, ue : int, optional
The end-points of the parameters interval. Defaults to
u[0] and u[-1].
k : int, optional
Degree of the spline. Cubic splines are recommended.
Even values of `k` should be avoided especially with a small s-value.
``1 <= k <= 5``, default is 3.
task : int, optional
If task==0 (default), find t and c for a given smoothing factor, s.
If task==1, find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1
for the same set of data.
If task=-1 find the weighted least square spline for a given set of
knots, t.
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
where g(x) is the smoothed interpolation of (x,y). The user can
use `s` to control the trade-off between closeness and smoothness
of fit. Larger `s` means more smoothing while smaller values of `s`
indicate less smoothing. Recommended values of `s` depend on the
weights, w. If the weights represent the inverse of the
standard-deviation of y, then a good `s` value should be found in
the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
data points in x, y, and w.
t : int, optional
The knots needed for task=-1.
full_output : int, optional
If non-zero, then return optional outputs.
nest : int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. By default nest=m/2.
Always large enough is nest=m+k+1.
per : int, optional
If non-zero, data points are considered periodic with period
``x[m-1] - x[0]`` and a smooth periodic spline approximation is
returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used.
quiet : int, optional
Non-zero to suppress messages.
This parameter is deprecated; use standard Python warning filters
instead.
Returns
-------
tck : tuple
(t,c,k) a tuple containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
u : array
An array of the values of the parameter.
fp : float
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated
if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See Also
--------
splrep, splev, sproot, spalde, splint,
bisplrep, bisplev
UnivariateSpline, BivariateSpline
BSpline
make_interp_spline
Notes
-----
See `splev` for evaluation of the spline and its derivatives.
The number of dimensions N must be smaller than 11.
The number of coefficients in the `c` array is ``k+1`` less then the number
of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads
the array of coefficients to have the same length as the array of knots.
These additional coefficients are ignored by evaluation routines, `splev`
and `BSpline`.
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines", report tw55, Dept. Computer Science,
K.U.Leuven, 1981.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
Generate a discretization of a limacon curve in the polar coordinates:
>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.5 + np.cos(phi) # polar coords
>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
And interpolate:
>>> from scipy.interpolate import splprep, splev
>>> tck, u = splprep([x, y], s=0)
>>> new_points = splev(u, tck)
Notice that (i) we force interpolation by using `s=0`,
(ii) the parameterization, ``u``, is generated automatically.
Now plot the result:
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y, 'ro')
>>> ax.plot(new_points[0], new_points[1], 'r-')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :