Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.interpolate »
Signature de la fonction generate_knots
def generate_knots(x, y, *, w=None, xb=None, xe=None, k=3, s=0, nest=None)
Description
help(scipy.interpolate.generate_knots)
Replicate FITPACK's constructing the knot vector.
Parameters
----------
x, y : array_like
The data points defining the curve ``y = f(x)``.
w : array_like, optional
Weights.
xb : float, optional
The boundary of the approximation interval. If None (default),
is set to ``x[0]``.
xe : float, optional
The boundary of the approximation interval. If None (default),
is set to ``x[-1]``.
k : int, optional
The spline degree. Default is cubic, ``k = 3``.
s : float, optional
The smoothing factor. Default is ``s = 0``.
nest : int, optional
Stop when at least this many knots are placed.
Yields
------
t : ndarray
Knot vectors with an increasing number of knots.
The generator is finite: it stops when the smoothing critetion is
satisfied, or when then number of knots exceeds the maximum value:
the user-provided `nest` or `x.size + k + 1` --- which is the knot vector
for the interpolating spline.
Examples
--------
Generate some noisy data and fit a sequence of LSQ splines:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import make_lsq_spline, generate_knots
>>> rng = np.random.default_rng(12345)
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(size=50)
>>> knots = list(generate_knots(x, y, s=1e-10))
>>> for t in knots[::3]:
... spl = make_lsq_spline(x, y, t)
... xs = xs = np.linspace(-3, 3, 201)
... plt.plot(xs, spl(xs), '-', label=f'n = {len(t)}', lw=3, alpha=0.7)
>>> plt.plot(x, y, 'o', label='data')
>>> plt.plot(xs, np.exp(-xs**2), '--')
>>> plt.legend()
Note that increasing the number of knots make the result follow the data
more and more closely.
Also note that a step of the generator may add multiple knots:
>>> [len(t) for t in knots]
[8, 9, 10, 12, 16, 24, 40, 48, 52, 54]
Notes
-----
The routine generates successive knots vectors of increasing length, starting
from ``2*(k+1)`` to ``len(x) + k + 1``, trying to make knots more dense
in the regions where the deviation of the LSQ spline from data is large.
When the maximum number of knots, ``len(x) + k + 1`` is reached
(this happens when ``s`` is small and ``nest`` is large), the generator
stops, and the last output is the knots for the interpolation with the
not-a-knot boundary condition.
Knots are located at data sites, unless ``k`` is even and the number of knots
is ``len(x) + k + 1``. In that case, the last output of the generator
has internal knots at Greville sites, ``(x[1:] + x[:-1]) / 2``.
.. versionadded:: 1.15.0
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :