Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.interpolate »

Fonction splrep - module scipy.interpolate

Signature de la fonction splrep

def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1) 

Description

splrep.__doc__

    Find the B-spline representation of a 1-D curve.

    Given the set of data points ``(x[i], y[i])`` determine a smooth spline
    approximation of degree k on the interval ``xb <= x <= xe``.

    Parameters
    ----------
    x, y : array_like
        The data points defining a curve y = f(x).
    w : array_like, optional
        Strictly positive rank-1 array of weights the same length as x and y.
        The weights are used in computing the weighted least-squares spline
        fit. If the errors in the y values have standard-deviation given by the
        vector d, then w should be 1/d. Default is ones(len(x)).
    xb, xe : float, optional
        The interval to fit.  If None, these default to x[0] and x[-1]
        respectively.
    k : int, optional
        The degree of the spline fit. It is recommended to use cubic splines.
        Even values of k should be avoided especially with small s values.
        1 <= k <= 5
    task : {1, 0, -1}, optional
        If task==0 find t and c for a given smoothing factor, s.

        If task==1 find t and c for another value of the smoothing factor, s.
        There must have been a previous call with task=0 or task=1 for the same
        set of data (t will be stored an used internally)

        If task=-1 find the weighted least square spline for a given set of
        knots, t. These should be interior knots as knots on the ends will be
        added automatically.
    s : float, optional
        A smoothing condition. The amount of smoothness is determined by
        satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x)
        is the smoothed interpolation of (x,y). The user can use s to control
        the tradeoff between closeness and smoothness of fit. Larger s means
        more smoothing while smaller values of s indicate less smoothing.
        Recommended values of s depend on the weights, w. If the weights
        represent the inverse of the standard-deviation of y, then a good s
        value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
        the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if
        weights are supplied. s = 0.0 (interpolating) if no weights are
        supplied.
    t : array_like, optional
        The knots needed for task=-1. If given then task is automatically set
        to -1.
    full_output : bool, optional
        If non-zero, then return optional outputs.
    per : bool, optional
        If non-zero, data points are considered periodic with period x[m-1] -
        x[0] and a smooth periodic spline approximation is returned. Values of
        y[m-1] and w[m-1] are not used.
    quiet : bool, optional
        Non-zero to suppress messages.
        This parameter is deprecated; use standard Python warning filters
        instead.

    Returns
    -------
    tck : tuple
        A tuple (t,c,k) containing the vector of knots, the B-spline
        coefficients, and the degree of the spline.
    fp : array, optional
        The weighted sum of squared residuals of the spline approximation.
    ier : int, optional
        An integer flag about splrep success. Success is indicated if ier<=0.
        If ier in [1,2,3] an error occurred but was not raised. Otherwise an
        error is raised.
    msg : str, optional
        A message corresponding to the integer flag, ier.

    See Also
    --------
    UnivariateSpline, BivariateSpline
    splprep, splev, sproot, spalde, splint
    bisplrep, bisplev
    BSpline
    make_interp_spline

    Notes
    -----
    See `splev` for evaluation of the spline and its derivatives. Uses the
    FORTRAN routine ``curfit`` from FITPACK.

    The user is responsible for assuring that the values of `x` are unique.
    Otherwise, `splrep` will not return sensible results.

    If provided, knots `t` must satisfy the Schoenberg-Whitney conditions,
    i.e., there must be a subset of data points ``x[j]`` such that
    ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.

    This routine zero-pads the coefficients array ``c`` to have the same length
    as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored
    by the evaluation routines, `splev` and `BSpline`.) This is in contrast with
    `splprep`, which does not zero-pad the coefficients.

    References
    ----------
    Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:

    .. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
       integration of experimental data using spline functions",
       J.Comp.Appl.Maths 1 (1975) 165-184.
    .. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
       grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
       1286-1304.
    .. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
       functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
    .. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
       Numerical Analysis, Oxford University Press, 1993.

    Examples
    --------
    You can interpolate 1-D points with a B-spline curve.
    Further examples are given in
    :ref:`in the tutorial <tutorial-interpolate_splXXX>`.

    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import splev, splrep
    >>> x = np.linspace(0, 10, 10)
    >>> y = np.sin(x)
    >>> spl = splrep(x, y)
    >>> x2 = np.linspace(0, 10, 200)
    >>> y2 = splev(x2, spl)
    >>> plt.plot(x, y, 'o', x2, y2)
    >>> plt.show()