Module « scipy.interpolate »
Classe « LSQUnivariateSpline »
Informations générales
Héritage
builtins.object
UnivariateSpline
LSQUnivariateSpline
Définition
class LSQUnivariateSpline(UnivariateSpline):
Description [extrait de LSQUnivariateSpline.__doc__]
1-D spline with explicit internal knots.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
specifies the internal knots of the spline
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be increasing
y : (N,) array_like
Input dimension of data points
t : (M,) array_like
interior knots of the spline. Must be in ascending order and::
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default),
weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox = [x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
Default is `k` = 3, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
Raises
------
ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions
See Also
--------
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
InterpolatedUnivariateSpline :
a interpolating univariate spline for a given set of data points.
splrep :
a function to find the B-spline representation of a 1-D curve
splev :
a function to evaluate a B-spline or its derivatives
sproot :
a function to find the roots of a cubic B-spline
splint :
a function to evaluate the definite integral of a B-spline between two
given points
spalde :
a function to evaluate all derivatives of a B-spline
Notes
-----
The number of data points must be larger than the spline degree `k`.
Knots `t` must satisfy the Schoenberg-Whitney conditions,
i.e., there must be a subset of data points ``x[j]`` such that
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
Examples
--------
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()
Check the knot vector:
>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])
Constructing lsq spline using the knots from another spline:
>>> x = np.arange(10)
>>> s = UnivariateSpline(x, x, s=0)
>>> s.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
>>> knt = s.get_knots()
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
>>> s1.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
Constructeur(s)
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe UnivariateSpline
__call__, __init_subclass__, __subclasshook__, antiderivative, derivative, derivatives, get_coeffs, get_knots, get_residual, integral, roots, set_smoothing_factor, validate_input
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :