Module « scipy.integrate »
Classe « RK23 »
Informations générales
Héritage
builtins.object
OdeSolver
RungeKutta
RK23
Définition
class RK23(RungeKutta):
Description [extrait de RK23.__doc__]
Explicit Runge-Kutta method of order 3(2).
This uses the Bogacki-Shampine pair of formulas [1]_. The error is controlled
assuming accuracy of the second-order method, but steps are taken using the
third-order accurate formula (local extrapolation is done). A cubic Hermite
polynomial is used for the dense output.
Can be applied in the complex domain.
Parameters
----------
fun : callable
Right-hand side of the system. The calling signature is ``fun(t, y)``.
Here ``t`` is a scalar and there are two options for ndarray ``y``.
It can either have shape (n,), then ``fun`` must return array_like with
shape (n,). Or alternatively it can have shape (n, k), then ``fun``
must return array_like with shape (n, k), i.e. each column
corresponds to a single column in ``y``. The choice between the two
options is determined by `vectorized` argument (see below).
t0 : float
Initial time.
y0 : array_like, shape (n,)
Initial state.
t_bound : float
Boundary time - the integration won't continue beyond it. It also
determines the direction of the integration.
first_step : float or None, optional
Initial step size. Default is ``None`` which means that the algorithm
should choose.
max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here, `rtol` controls a
relative accuracy (number of correct digits). But if a component of `y`
is approximately below `atol`, the error only needs to fall within
the same `atol` threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.
vectorized : bool, optional
Whether `fun` is implemented in a vectorized fashion. Default is False.
Attributes
----------
n : int
Number of equations.
status : string
Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
Boundary time.
direction : float
Integration direction: +1 or -1.
t : float
Current time.
y : ndarray
Current state.
t_old : float
Previous time. None if no steps were made yet.
step_size : float
Size of the last successful step. None if no steps were made yet.
nfev : int
Number evaluations of the system's right-hand side.
njev : int
Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the Jacobian.
nlu : int
Number of LU decompositions. Is always 0 for this solver.
References
----------
.. [1] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
Liste des attributs statiques
A | [[0. 0. 0. ]
[0.5 0. 0. ]
[0. 0.75 0. ]] |
B | [0.22222222 0.33333333 0.44444444] |
C | [0. 0.5 0.75] |
E | [ 0.06944444 -0.08333333 -0.11111111 0.125 ] |
error_estimator_order | 2 |
n_stages | 3 |
order | 3 |
P | [[ 1. -1.33333333 0.55555556]
[ 0. 1. -0.66666667]
[ 0. 1.33333333 -0.88888889]
[ 0. -1. 1. ]] |
TOO_SMALL_STEP | Required step size is less than spacing between numbers. |
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe RungeKutta
__init_subclass__, __subclasshook__
Méthodes héritées de la classe OdeSolver
dense_output, step
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :