Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.integrate »

Fonction cubature - module scipy.integrate

Signature de la fonction cubature

def cubature(f, a, b, *, rule='gk21', rtol=1e-08, atol=0, max_subdivisions=10000, args=(), workers=1, points=None) 

Description

help(scipy.integrate.cubature)

Adaptive cubature of multidimensional array-valued function.

Given an arbitrary integration rule, this function returns an estimate of the
integral to the requested tolerance over the region defined by the arrays `a` and
`b` specifying the corners of a hypercube.

Convergence is not guaranteed for all integrals.

Parameters
----------
f : callable
    Function to integrate. `f` must have the signature::

        f(x : ndarray, *args) -> ndarray

    `f` should accept arrays ``x`` of shape::

        (npoints, ndim)

    and output arrays of shape::

        (npoints, output_dim_1, ..., output_dim_n)

    In this case, `cubature` will return arrays of shape::

        (output_dim_1, ..., output_dim_n)
a, b : array_like
    Lower and upper limits of integration as 1D arrays specifying the left and right
    endpoints of the intervals being integrated over. Limits can be infinite.
rule : str, optional
    Rule used to estimate the integral. If passing a string, the options are
    "gauss-kronrod" (21 node), or "genz-malik" (degree 7). If a rule like
    "gauss-kronrod" is specified for an ``n``-dim integrand, the corresponding
    Cartesian product rule is used. "gk21", "gk15" are also supported for
    compatibility with `quad_vec`. See Notes.
rtol, atol : float, optional
    Relative and absolute tolerances. Iterations are performed until the error is
    estimated to be less than ``atol + rtol * abs(est)``. Here `rtol` controls
    relative accuracy (number of correct digits), while `atol` controls absolute
    accuracy (number of correct decimal places). To achieve the desired `rtol`, set
    `atol` to be smaller than the smallest value that can be expected from
    ``rtol * abs(y)`` so that `rtol` dominates the allowable error. If `atol` is
    larger than ``rtol * abs(y)`` the number of correct digits is not guaranteed.
    Conversely, to achieve the desired `atol`, set `rtol` such that
    ``rtol * abs(y)`` is always smaller than `atol`. Default values are 1e-8 for
    `rtol` and 0 for `atol`.
max_subdivisions : int, optional
    Upper bound on the number of subdivisions to perform. Default is 10,000.
args : tuple, optional
    Additional positional args passed to `f`, if any.
workers : int or map-like callable, optional
    If `workers` is an integer, part of the computation is done in parallel
    subdivided to this many tasks (using :class:`python:multiprocessing.pool.Pool`).
    Supply `-1` to use all cores available to the Process. Alternatively, supply a
    map-like callable, such as :meth:`python:multiprocessing.pool.Pool.map` for
    evaluating the population in parallel. This evaluation is carried out as
    ``workers(func, iterable)``.
points : list of array_like, optional
    List of points to avoid evaluating `f` at, under the condition that the rule
    being used does not evaluate `f` on the boundary of a region (which is the
    case for all Genz-Malik and Gauss-Kronrod rules). This can be useful if `f` has
    a singularity at the specified point. This should be a list of array-likes where
    each element has length ``ndim``. Default is empty. See Examples.

Returns
-------
res : object
    Object containing the results of the estimation. It has the following
    attributes:

    estimate : ndarray
        Estimate of the value of the integral over the overall region specified.
    error : ndarray
        Estimate of the error of the approximation over the overall region
        specified.
    status : str
        Whether the estimation was successful. Can be either: "converged",
        "not_converged".
    subdivisions : int
        Number of subdivisions performed.
    atol, rtol : float
        Requested tolerances for the approximation.
    regions: list of object
        List of objects containing the estimates of the integral over smaller
        regions of the domain.

    Each object in ``regions`` has the following attributes:

    a, b : ndarray
        Points describing the corners of the region. If the original integral
        contained infinite limits or was over a region described by `region`,
        then `a` and `b` are in the transformed coordinates.
    estimate : ndarray
        Estimate of the value of the integral over this region.
    error : ndarray
        Estimate of the error of the approximation over this region.

Notes
-----
The algorithm uses a similar algorithm to `quad_vec`, which itself is based on the
implementation of QUADPACK's DQAG* algorithms, implementing global error control and
adaptive subdivision.

The source of the nodes and weights used for Gauss-Kronrod quadrature can be found
in [1]_, and the algorithm for calculating the nodes and weights in Genz-Malik
cubature can be found in [2]_.

The rules currently supported via the `rule` argument are:

- ``"gauss-kronrod"``, 21-node Gauss-Kronrod
- ``"genz-malik"``, n-node Genz-Malik

If using Gauss-Kronrod for an ``n``-dim integrand where ``n > 2``, then the
corresponding Cartesian product rule will be found by taking the Cartesian product
of the nodes in the 1D case. This means that the number of nodes scales
exponentially as ``21^n`` in the Gauss-Kronrod case, which may be problematic in a
moderate number of dimensions.

Genz-Malik is typically less accurate than Gauss-Kronrod but has much fewer nodes,
so in this situation using "genz-malik" might be preferable.

Infinite limits are handled with an appropriate variable transformation. Assuming
``a = [a_1, ..., a_n]`` and ``b = [b_1, ..., b_n]``:

If :math:`a_i = -\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = \frac{1-|t|}{t}` and :math:`t \in (-1, 1)`.

If :math:`a_i \ne \pm\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = a_i + \frac{1-t}{t}` and
:math:`t \in (0, 1)`.

If :math:`a_i = -\infty` and :math:`b_i \ne \pm\infty`, the i-th integration
variable will use the transformation :math:`x = b_i - \frac{1-t}{t}` and
:math:`t \in (0, 1)`.

References
----------
.. [1] R. Piessens, E. de Doncker, Quadpack: A Subroutine Package for Automatic
    Integration, files: dqk21.f, dqk15.f (1983).

.. [2] A.C. Genz, A.A. Malik, Remarks on algorithm 006: An adaptive algorithm for
    numerical integration over an N-dimensional rectangular region, Journal of
    Computational and Applied Mathematics, Volume 6, Issue 4, 1980, Pages 295-302,
    ISSN 0377-0427
    :doi:`10.1016/0771-050X(80)90039-X`

Examples
--------
**1D integral with vector output**:

.. math::

    \int^1_0 \mathbf f(x) \text dx

Where ``f(x) = x^n`` and ``n = np.arange(10)`` is a vector. Since no rule is
specified, the default "gk21" is used, which corresponds to Gauss-Kronrod
integration with 21 nodes.

>>> import numpy as np
>>> from scipy.integrate import cubature
>>> def f(x, n):
...    # Make sure x and n are broadcastable
...    return x[:, np.newaxis]**n[np.newaxis, :]
>>> res = cubature(
...     f,
...     a=[0],
...     b=[1],
...     args=(np.arange(10),),
... )
>>> res.estimate
 array([1.        , 0.5       , 0.33333333, 0.25      , 0.2       ,
        0.16666667, 0.14285714, 0.125     , 0.11111111, 0.1       ])

**7D integral with arbitrary-shaped array output**::

    f(x) = cos(2*pi*r + alphas @ x)

for some ``r`` and ``alphas``, and the integral is performed over the unit
hybercube, :math:`[0, 1]^7`. Since the integral is in a moderate number of
dimensions, "genz-malik" is used rather than the default "gauss-kronrod" to
avoid constructing a product rule with :math:`21^7 \approx 2 \times 10^9` nodes.

>>> import numpy as np
>>> from scipy.integrate import cubature
>>> def f(x, r, alphas):
...     # f(x) = cos(2*pi*r + alphas @ x)
...     # Need to allow r and alphas to be arbitrary shape
...     npoints, ndim = x.shape[0], x.shape[-1]
...     alphas = alphas[np.newaxis, ...]
...     x = x.reshape(npoints, *([1]*(len(alphas.shape) - 1)), ndim)
...     return np.cos(2*np.pi*r + np.sum(alphas * x, axis=-1))
>>> rng = np.random.default_rng()
>>> r, alphas = rng.random((2, 3)), rng.random((2, 3, 7))
>>> res = cubature(
...     f=f,
...     a=np.array([0, 0, 0, 0, 0, 0, 0]),
...     b=np.array([1, 1, 1, 1, 1, 1, 1]),
...     rtol=1e-5,
...     rule="genz-malik",
...     args=(r, alphas),
... )
>>> res.estimate
 array([[-0.79812452,  0.35246913, -0.52273628],
        [ 0.88392779,  0.59139899,  0.41895111]])

**Parallel computation with** `workers`:

>>> from concurrent.futures import ThreadPoolExecutor
>>> with ThreadPoolExecutor() as executor:
...     res = cubature(
...         f=f,
...         a=np.array([0, 0, 0, 0, 0, 0, 0]),
...         b=np.array([1, 1, 1, 1, 1, 1, 1]),
...         rtol=1e-5,
...         rule="genz-malik",
...         args=(r, alphas),
...         workers=executor.map,
...      )
>>> res.estimate
 array([[-0.79812452,  0.35246913, -0.52273628],
        [ 0.88392779,  0.59139899,  0.41895111]])

**2D integral with infinite limits**:

.. math::

    \int^{ \infty }_{ -\infty }
    \int^{ \infty }_{ -\infty }
        e^{-x^2-y^2}
    \text dy
    \text dx

>>> def gaussian(x):
...     return np.exp(-np.sum(x**2, axis=-1))
>>> res = cubature(gaussian, [-np.inf, -np.inf], [np.inf, np.inf])
>>> res.estimate
 3.1415926

**1D integral with singularities avoided using** `points`:

.. math::

    \int^{ 1 }_{ -1 }
      \frac{\sin(x)}{x}
    \text dx

It is necessary to use the `points` parameter to avoid evaluating `f` at the origin.

>>> def sinc(x):
...     return np.sin(x)/x
>>> res = cubature(sinc, [-1], [1], points=[[0]])
>>> res.estimate
 1.8921661


Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé