Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.integrate »

Classe « LSODA »

Informations générales

Héritage

builtins.object
    OdeSolver
        LSODA

Définition

class LSODA(OdeSolver):

help(LSODA)

Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
automatically between the nonstiff Adams method and the stiff BDF method.
The method was originally detailed in [2]_.

Parameters
----------
fun : callable
    Right-hand side of the system: the time derivative of the state ``y``
    at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
    scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
    return an array of the same shape as ``y``. See `vectorized` for more
    information.
t0 : float
    Initial time.
y0 : array_like, shape (n,)
    Initial state.
t_bound : float
    Boundary time - the integration won't continue beyond it. It also
    determines the direction of the integration.
first_step : float or None, optional
    Initial step size. Default is ``None`` which means that the algorithm
    should choose.
min_step : float, optional
    Minimum allowed step size. Default is 0.0, i.e., the step size is not
    bounded and determined solely by the solver.
max_step : float, optional
    Maximum allowed step size. Default is np.inf, i.e., the step size is not
    bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
    Relative and absolute tolerances. The solver keeps the local error
    estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
    relative accuracy (number of correct digits), while `atol` controls
    absolute accuracy (number of correct decimal places). To achieve the
    desired `rtol`, set `atol` to be smaller than the smallest value that
    can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
    allowable error. If `atol` is larger than ``rtol * abs(y)`` the
    number of correct digits is not guaranteed. Conversely, to achieve the
    desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
    than `atol`. If components of y have different scales, it might be
    beneficial to set different `atol` values for different components by
    passing array_like with shape (n,) for `atol`. Default values are
    1e-3 for `rtol` and 1e-6 for `atol`.
jac : None or callable, optional
    Jacobian matrix of the right-hand side of the system with respect to
    ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
    equal to ``d f_i / d y_j``. The function will be called as
    ``jac(t, y)``. If None (default), the Jacobian will be
    approximated by finite differences. It is generally recommended to
    provide the Jacobian rather than relying on a finite-difference
    approximation.
lband, uband : int or None
    Parameters defining the bandwidth of the Jacobian,
    i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
    these requires your jac routine to return the Jacobian in the packed format:
    the returned array must have ``n`` columns and ``uband + lband + 1``
    rows in which Jacobian diagonals are written. Specifically
    ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
    in `scipy.linalg.solve_banded` (check for an illustration).
    These parameters can be also used with ``jac=None`` to reduce the
    number of Jacobian elements estimated by finite differences.
vectorized : bool, optional
    Whether `fun` may be called in a vectorized fashion. False (default)
    is recommended for this solver.

    If ``vectorized`` is False, `fun` will always be called with ``y`` of
    shape ``(n,)``, where ``n = len(y0)``.

    If ``vectorized`` is True, `fun` may be called with ``y`` of shape
    ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
    such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
    the returned array is the time derivative of the state corresponding
    with a column of ``y``).

    Setting ``vectorized=True`` allows for faster finite difference
    approximation of the Jacobian by methods 'Radau' and 'BDF', but
    will result in slower execution for this solver.

Attributes
----------
n : int
    Number of equations.
status : string
    Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
    Boundary time.
direction : float
    Integration direction: +1 or -1.
t : float
    Current time.
y : ndarray
    Current state.
t_old : float
    Previous time. None if no steps were made yet.
nfev : int
    Number of evaluations of the right-hand side.
njev : int
    Number of evaluations of the Jacobian.

References
----------
.. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
       Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
       pp. 55-64, 1983.
.. [2] L. Petzold, "Automatic selection of methods for solving stiff and
       nonstiff systems of ordinary differential equations", SIAM Journal
       on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
       1983.

Constructeur(s)

Signature du constructeur Description
__init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0, max_step=inf, rtol=0.001, atol=1e-06, jac=None, lband=None, uband=None, vectorized=False, **extraneous)

Liste des attributs statiques

Nom de l'attribut Valeur
TOO_SMALL_STEPRequired step size is less than spacing between numbers.

Liste des propriétés

Nom de la propriétéDescription
step_size

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription

Méthodes héritées de la classe OdeSolver

__init_subclass__, __subclasshook__, dense_output, step

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __getstate__, __hash__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé