Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.integrate »
Classe « LSODA »
Informations générales
Héritage
builtins.object
OdeSolver
LSODA
Définition
class LSODA(OdeSolver):
help(LSODA)
Adams/BDF method with automatic stiffness detection and switching.
This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
automatically between the nonstiff Adams method and the stiff BDF method.
The method was originally detailed in [2]_.
Parameters
----------
fun : callable
Right-hand side of the system: the time derivative of the state ``y``
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
return an array of the same shape as ``y``. See `vectorized` for more
information.
t0 : float
Initial time.
y0 : array_like, shape (n,)
Initial state.
t_bound : float
Boundary time - the integration won't continue beyond it. It also
determines the direction of the integration.
first_step : float or None, optional
Initial step size. Default is ``None`` which means that the algorithm
should choose.
min_step : float, optional
Minimum allowed step size. Default is 0.0, i.e., the step size is not
bounded and determined solely by the solver.
max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
relative accuracy (number of correct digits), while `atol` controls
absolute accuracy (number of correct decimal places). To achieve the
desired `rtol`, set `atol` to be smaller than the smallest value that
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
number of correct digits is not guaranteed. Conversely, to achieve the
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
than `atol`. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.
jac : None or callable, optional
Jacobian matrix of the right-hand side of the system with respect to
``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
equal to ``d f_i / d y_j``. The function will be called as
``jac(t, y)``. If None (default), the Jacobian will be
approximated by finite differences. It is generally recommended to
provide the Jacobian rather than relying on a finite-difference
approximation.
lband, uband : int or None
Parameters defining the bandwidth of the Jacobian,
i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
these requires your jac routine to return the Jacobian in the packed format:
the returned array must have ``n`` columns and ``uband + lband + 1``
rows in which Jacobian diagonals are written. Specifically
``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
in `scipy.linalg.solve_banded` (check for an illustration).
These parameters can be also used with ``jac=None`` to reduce the
number of Jacobian elements estimated by finite differences.
vectorized : bool, optional
Whether `fun` may be called in a vectorized fashion. False (default)
is recommended for this solver.
If ``vectorized`` is False, `fun` will always be called with ``y`` of
shape ``(n,)``, where ``n = len(y0)``.
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
the returned array is the time derivative of the state corresponding
with a column of ``y``).
Setting ``vectorized=True`` allows for faster finite difference
approximation of the Jacobian by methods 'Radau' and 'BDF', but
will result in slower execution for this solver.
Attributes
----------
n : int
Number of equations.
status : string
Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
Boundary time.
direction : float
Integration direction: +1 or -1.
t : float
Current time.
y : ndarray
Current state.
t_old : float
Previous time. None if no steps were made yet.
nfev : int
Number of evaluations of the right-hand side.
njev : int
Number of evaluations of the Jacobian.
References
----------
.. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
pp. 55-64, 1983.
.. [2] L. Petzold, "Automatic selection of methods for solving stiff and
nonstiff systems of ordinary differential equations", SIAM Journal
on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
1983.
Constructeur(s)
__init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0, max_step=inf, rtol=0.001, atol=1e-06, jac=None, lband=None, uband=None, vectorized=False, **extraneous) |
|
Liste des attributs statiques
TOO_SMALL_STEP | Required step size is less than spacing between numbers. |
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe OdeSolver
__init_subclass__, __subclasshook__, dense_output, step
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__getstate__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :