Module « scipy.integrate »
Signature de la fonction newton_cotes
def newton_cotes(rn, equal=0)
Description
newton_cotes.__doc__
Return weights and error coefficient for Newton-Cotes integration.
Suppose we have (N+1) samples of f at the positions
x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
integral between x_0 and x_N is:
:math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
+ B_N (\Delta x)^{N+2} f^{N+1} (\xi)`
where :math:`\xi \in [x_0,x_N]`
and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.
If the samples are equally-spaced and N is even, then the error
term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.
Parameters
----------
rn : int
The integer order for equally-spaced data or the relative positions of
the samples with the first sample at 0 and the last at N, where N+1 is
the length of `rn`. N is the order of the Newton-Cotes integration.
equal : int, optional
Set to 1 to enforce equally spaced data.
Returns
-------
an : ndarray
1-D array of weights to apply to the function at the provided sample
positions.
B : float
Error coefficient.
Examples
--------
Compute the integral of sin(x) in [0, :math:`\pi`]:
>>> from scipy.integrate import newton_cotes
>>> def f(x):
... return np.sin(x)
>>> a = 0
>>> b = np.pi
>>> exact = 2
>>> for N in [2, 4, 6, 8, 10]:
... x = np.linspace(a, b, N + 1)
... an, B = newton_cotes(N, 1)
... dx = (b - a) / N
... quad = dx * np.sum(an * f(x))
... error = abs(quad - exact)
... print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
...
2 2.094395102 9.43951e-02
4 1.998570732 1.42927e-03
6 2.000017814 1.78136e-05
8 1.999999835 1.64725e-07
10 2.000000001 1.14677e-09
Notes
-----
Normally, the Newton-Cotes rules are used on smaller integration
regions and a composite rule is used to return the total integral.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :