Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.integrate »

Classe « DOP853 »

Informations générales

Héritage

builtins.object
    OdeSolver
        RungeKutta
            DOP853

Définition

class DOP853(RungeKutta):

Description [extrait de DOP853.__doc__]

Explicit Runge-Kutta method of order 8.

    This is a Python implementation of "DOP853" algorithm originally written
    in Fortran [1]_, [2]_. Note that this is not a literate translation, but
    the algorithmic core and coefficients are the same.

    Can be applied in the complex domain.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system. The calling signature is ``fun(t, y)``.
        Here, ``t`` is a scalar, and there are two options for the ndarray ``y``:
        It can either have shape (n,); then ``fun`` must return array_like with
        shape (n,). Alternatively it can have shape (n, k); then ``fun``
        must return an array_like with shape (n, k), i.e. each column
        corresponds to a single column in ``y``. The choice between the two
        options is determined by `vectorized` argument (see below).
    t0 : float
        Initial time.
    y0 : array_like, shape (n,)
        Initial state.
    t_bound : float
        Boundary time - the integration won't continue beyond it. It also
        determines the direction of the integration.
    first_step : float or None, optional
        Initial step size. Default is ``None`` which means that the algorithm
        should choose.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e. the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float and array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
        relative accuracy (number of correct digits). But if a component of `y`
        is approximately below `atol`, the error only needs to fall within
        the same `atol` threshold, and the number of correct digits is not
        guaranteed. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    vectorized : bool, optional
        Whether `fun` is implemented in a vectorized fashion. Default is False.

    Attributes
    ----------
    n : int
        Number of equations.
    status : string
        Current status of the solver: 'running', 'finished' or 'failed'.
    t_bound : float
        Boundary time.
    direction : float
        Integration direction: +1 or -1.
    t : float
        Current time.
    y : ndarray
        Current state.
    t_old : float
        Previous time. None if no steps were made yet.
    step_size : float
        Size of the last successful step. None if no steps were made yet.
    nfev : int
        Number evaluations of the system's right-hand side.
    njev : int
        Number of evaluations of the Jacobian. Is always 0 for this solver
        as it does not use the Jacobian.
    nlu : int
        Number of LU decompositions. Is always 0 for this solver.

    References
    ----------
    .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
           Equations I: Nonstiff Problems", Sec. II.
    .. [2] `Page with original Fortran code of DOP853
            <http://www.unige.ch/~hairer/software.html>`_.
    

Constructeur(s)

Signature du constructeur Description
__init__(self, fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False, first_step=None, **extraneous)

Liste des attributs statiques

Nom de l'attribut Valeur
A[[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 5.26001520e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 1.97250570e-02 5.91751710e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 2.95875855e-02 0.00000000e+00 8.87627564e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 2.41365134e-01 0.00000000e+00 -8.84549479e-01 9.24834003e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 3.70370370e-02 0.00000000e+00 0.00000000e+00 1.70828609e-01 1.25467688e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 3.71093750e-02 0.00000000e+00 0.00000000e+00 1.70252211e-01 6.02165390e-02 -1.75781250e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 3.70920001e-02 0.00000000e+00 0.00000000e+00 1.70383926e-01 1.07262030e-01 -1.53194377e-02 8.27378916e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 6.24110959e-01 0.00000000e+00 0.00000000e+00 -3.36089263e+00 -8.68219347e-01 2.75920997e+01 2.01540676e+01 -4.34898842e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 4.77662536e-01 0.00000000e+00 0.00000000e+00 -2.48811462e+00 -5.90290827e-01 2.12300514e+01 1.52792336e+01 -3.32882110e+01 -2.03312017e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00] [-9.37142430e-01 0.00000000e+00 0.00000000e+00 5.18637243e+00 1.09143735e+00 -8.14978701e+00 -1.85200657e+01 2.27394871e+01 2.49360555e+00 -3.04676447e+00 0.00000000e+00 0.00000000e+00] [ 2.27331015e+00 0.00000000e+00 0.00000000e+00 -1.05344955e+01 -2.00087206e+00 -1.79589319e+01 2.79488845e+01 -2.85899828e+00 -8.87285693e+00 1.23605672e+01 6.43392746e-01 0.00000000e+00]]
A_EXTRA[[ 5.61675023e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.53500210e-01 -2.46239037e-01 -1.24191423e-01 1.53291798e-01 8.20105230e-03 7.56789766e-03 -8.29800000e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00] [ 3.18346482e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.83009097e-02 5.35419883e-02 -5.49237486e-02 0.00000000e+00 0.00000000e+00 -1.08347329e-04 3.82571091e-04 -3.40465009e-04 1.41312444e-01 0.00000000e+00 0.00000000e+00] [-4.28896302e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 -4.69762142e+00 7.68342120e+00 4.06898982e+00 3.56727187e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.39902417e-03 2.94751479e+00 -9.15095847e+00 0.00000000e+00]]
B[ 0.05429373 0. 0. 0. 0. 4.45031289 1.8915179 -5.80120396 0.31116437 -0.15216095 0.2013654 0.04471062]
C[0. 0.05260015 0.07890023 0.11835034 0.28164966 0.33333333 0.25 0.30769231 0.65128205 0.6 0.85714286 1. ]
C_EXTRA[0.1 0.2 0.77777778]
D[[-8.42893828e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66714954e-01 -3.06894995e+00 2.38466766e+00 2.11703458e+00 -8.71391584e-01 2.24043743e+00 6.31578779e-01 -8.89903365e-02 1.81485055e+01 -9.19463239e+00 -4.43603639e+00] [ 1.04275086e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.42283492e+02 1.65200452e+02 -3.74546755e+02 -2.21136669e+01 7.73343267e+00 -3.06740847e+01 -9.33213053e+00 1.56972381e+01 -3.11394032e+01 -9.35292436e+00 3.58168415e+01] [ 1.99850532e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.87037309e+02 -1.89178138e+02 5.27808159e+02 -1.15739025e+01 6.88123269e+00 -1.00060510e+00 7.77713780e-01 -2.77820575e+00 -6.01966952e+01 8.43204055e+01 1.19922911e+01] [-2.56939335e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.54189749e+02 -2.31529379e+02 3.57639118e+02 9.34053242e+01 -3.74583231e+01 1.04099650e+02 2.98402934e+01 -4.35334566e+01 9.63245540e+01 -3.91772617e+01 -1.49726836e+02]]
ENotImplemented
E3[-0.18980075 0. 0. 0. 0. 4.45031289 1.8915179 -5.80120396 -0.42268232 -0.15216095 0.2013654 0.02265179 0. ]
E5[ 0.01312004 0. 0. 0. 0. -1.22515645 -0.49575895 1.66437718 -0.35032885 0.33417912 0.08192321 -0.02235531 0. ]
error_estimator_order7
n_stages12
order8
PNotImplemented
TOO_SMALL_STEPRequired step size is less than spacing between numbers.

Liste des propriétés

Nom de la propriétéDescription
step_size

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription

Méthodes héritées de la classe RungeKutta

__init_subclass__, __subclasshook__

Méthodes héritées de la classe OdeSolver

dense_output, step

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__