Module « scipy.integrate »
Classe « DOP853 »
Informations générales
Héritage
builtins.object
OdeSolver
RungeKutta
DOP853
Définition
class DOP853(RungeKutta):
Description [extrait de DOP853.__doc__]
Explicit Runge-Kutta method of order 8.
This is a Python implementation of "DOP853" algorithm originally written
in Fortran [1]_, [2]_. Note that this is not a literate translation, but
the algorithmic core and coefficients are the same.
Can be applied in the complex domain.
Parameters
----------
fun : callable
Right-hand side of the system. The calling signature is ``fun(t, y)``.
Here, ``t`` is a scalar, and there are two options for the ndarray ``y``:
It can either have shape (n,); then ``fun`` must return array_like with
shape (n,). Alternatively it can have shape (n, k); then ``fun``
must return an array_like with shape (n, k), i.e. each column
corresponds to a single column in ``y``. The choice between the two
options is determined by `vectorized` argument (see below).
t0 : float
Initial time.
y0 : array_like, shape (n,)
Initial state.
t_bound : float
Boundary time - the integration won't continue beyond it. It also
determines the direction of the integration.
first_step : float or None, optional
Initial step size. Default is ``None`` which means that the algorithm
should choose.
max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e. the step size is not
bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
relative accuracy (number of correct digits). But if a component of `y`
is approximately below `atol`, the error only needs to fall within
the same `atol` threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.
vectorized : bool, optional
Whether `fun` is implemented in a vectorized fashion. Default is False.
Attributes
----------
n : int
Number of equations.
status : string
Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
Boundary time.
direction : float
Integration direction: +1 or -1.
t : float
Current time.
y : ndarray
Current state.
t_old : float
Previous time. None if no steps were made yet.
step_size : float
Size of the last successful step. None if no steps were made yet.
nfev : int
Number evaluations of the system's right-hand side.
njev : int
Number of evaluations of the Jacobian. Is always 0 for this solver
as it does not use the Jacobian.
nlu : int
Number of LU decompositions. Is always 0 for this solver.
References
----------
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
Equations I: Nonstiff Problems", Sec. II.
.. [2] `Page with original Fortran code of DOP853
<http://www.unige.ch/~hairer/software.html>`_.
Constructeur(s)
__init__(self, fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False, first_step=None, **extraneous) |
|
Liste des attributs statiques
A | [[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 5.26001520e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 1.97250570e-02 5.91751710e-02 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 2.95875855e-02 0.00000000e+00 8.87627564e-02 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 2.41365134e-01 0.00000000e+00 -8.84549479e-01 9.24834003e-01
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.70370370e-02 0.00000000e+00 0.00000000e+00 1.70828609e-01
1.25467688e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.71093750e-02 0.00000000e+00 0.00000000e+00 1.70252211e-01
6.02165390e-02 -1.75781250e-02 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.70920001e-02 0.00000000e+00 0.00000000e+00 1.70383926e-01
1.07262030e-01 -1.53194377e-02 8.27378916e-03 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 6.24110959e-01 0.00000000e+00 0.00000000e+00 -3.36089263e+00
-8.68219347e-01 2.75920997e+01 2.01540676e+01 -4.34898842e+01
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 4.77662536e-01 0.00000000e+00 0.00000000e+00 -2.48811462e+00
-5.90290827e-01 2.12300514e+01 1.52792336e+01 -3.32882110e+01
-2.03312017e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[-9.37142430e-01 0.00000000e+00 0.00000000e+00 5.18637243e+00
1.09143735e+00 -8.14978701e+00 -1.85200657e+01 2.27394871e+01
2.49360555e+00 -3.04676447e+00 0.00000000e+00 0.00000000e+00]
[ 2.27331015e+00 0.00000000e+00 0.00000000e+00 -1.05344955e+01
-2.00087206e+00 -1.79589319e+01 2.79488845e+01 -2.85899828e+00
-8.87285693e+00 1.23605672e+01 6.43392746e-01 0.00000000e+00]] |
A_EXTRA | [[ 5.61675023e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 2.53500210e-01 -2.46239037e-01
-1.24191423e-01 1.53291798e-01 8.20105230e-03 7.56789766e-03
-8.29800000e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.18346482e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.83009097e-02 5.35419883e-02 -5.49237486e-02
0.00000000e+00 0.00000000e+00 -1.08347329e-04 3.82571091e-04
-3.40465009e-04 1.41312444e-01 0.00000000e+00 0.00000000e+00]
[-4.28896302e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 -4.69762142e+00 7.68342120e+00 4.06898982e+00
3.56727187e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
-1.39902417e-03 2.94751479e+00 -9.15095847e+00 0.00000000e+00]] |
B | [ 0.05429373 0. 0. 0. 0. 4.45031289
1.8915179 -5.80120396 0.31116437 -0.15216095 0.2013654 0.04471062] |
C | [0. 0.05260015 0.07890023 0.11835034 0.28164966 0.33333333
0.25 0.30769231 0.65128205 0.6 0.85714286 1. ] |
C_EXTRA | [0.1 0.2 0.77777778] |
D | [[-8.42893828e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 5.66714954e-01 -3.06894995e+00 2.38466766e+00
2.11703458e+00 -8.71391584e-01 2.24043743e+00 6.31578779e-01
-8.89903365e-02 1.81485055e+01 -9.19463239e+00 -4.43603639e+00]
[ 1.04275086e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.42283492e+02 1.65200452e+02 -3.74546755e+02
-2.21136669e+01 7.73343267e+00 -3.06740847e+01 -9.33213053e+00
1.56972381e+01 -3.11394032e+01 -9.35292436e+00 3.58168415e+01]
[ 1.99850532e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 -3.87037309e+02 -1.89178138e+02 5.27808159e+02
-1.15739025e+01 6.88123269e+00 -1.00060510e+00 7.77713780e-01
-2.77820575e+00 -6.01966952e+01 8.43204055e+01 1.19922911e+01]
[-2.56939335e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 -1.54189749e+02 -2.31529379e+02 3.57639118e+02
9.34053242e+01 -3.74583231e+01 1.04099650e+02 2.98402934e+01
-4.35334566e+01 9.63245540e+01 -3.91772617e+01 -1.49726836e+02]] |
E | NotImplemented |
E3 | [-0.18980075 0. 0. 0. 0. 4.45031289
1.8915179 -5.80120396 -0.42268232 -0.15216095 0.2013654 0.02265179
0. ] |
E5 | [ 0.01312004 0. 0. 0. 0. -1.22515645
-0.49575895 1.66437718 -0.35032885 0.33417912 0.08192321 -0.02235531
0. ] |
error_estimator_order | 7 |
n_stages | 12 |
order | 8 |
P | NotImplemented |
TOO_SMALL_STEP | Required step size is less than spacing between numbers. |
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe RungeKutta
__init_subclass__, __subclasshook__
Méthodes héritées de la classe OdeSolver
dense_output, step
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :