Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.integrate »

Fonction nquad - module scipy.integrate

Signature de la fonction nquad

def nquad(func, ranges, args=None, opts=None, full_output=False) 

Description

nquad.__doc__

    Integration over multiple variables.

    Wraps `quad` to enable integration over multiple variables.
    Various options allow improved integration of discontinuous functions, as
    well as the use of weighted integration, and generally finer control of the
    integration process.

    Parameters
    ----------
    func : {callable, scipy.LowLevelCallable}
        The function to be integrated. Has arguments of ``x0, ... xn``,
        ``t0, ... tm``, where integration is carried out over ``x0, ... xn``,
        which must be floats.  Where ```t0, ... tm``` are extra arguments
        passed in args.
        Function signature should be ``func(x0, x1, ..., xn, t0, t1, ..., tm)``.
        Integration is carried out in order.  That is, integration over ``x0``
        is the innermost integral, and ``xn`` is the outermost.

        If the user desires improved integration performance, then `f` may
        be a `scipy.LowLevelCallable` with one of the signatures::

            double func(int n, double *xx)
            double func(int n, double *xx, void *user_data)

        where ``n`` is the number of variables and args.  The ``xx`` array
        contains the coordinates and extra arguments. ``user_data`` is the data
        contained in the `scipy.LowLevelCallable`.
    ranges : iterable object
        Each element of ranges may be either a sequence  of 2 numbers, or else
        a callable that returns such a sequence. ``ranges[0]`` corresponds to
        integration over x0, and so on. If an element of ranges is a callable,
        then it will be called with all of the integration arguments available,
        as well as any parametric arguments. e.g., if
        ``func = f(x0, x1, x2, t0, t1)``, then ``ranges[0]`` may be defined as
        either ``(a, b)`` or else as ``(a, b) = range0(x1, x2, t0, t1)``.
    args : iterable object, optional
        Additional arguments ``t0, ..., tn``, required by `func`, `ranges`, and
        ``opts``.
    opts : iterable object or dict, optional
        Options to be passed to `quad`. May be empty, a dict, or
        a sequence of dicts or functions that return a dict. If empty, the
        default options from scipy.integrate.quad are used. If a dict, the same
        options are used for all levels of integraion. If a sequence, then each
        element of the sequence corresponds to a particular integration. e.g.,
        opts[0] corresponds to integration over x0, and so on. If a callable,
        the signature must be the same as for ``ranges``. The available
        options together with their default values are:

          - epsabs = 1.49e-08
          - epsrel = 1.49e-08
          - limit  = 50
          - points = None
          - weight = None
          - wvar   = None
          - wopts  = None

        For more information on these options, see `quad` and `quad_explain`.

    full_output : bool, optional
        Partial implementation of ``full_output`` from scipy.integrate.quad.
        The number of integrand function evaluations ``neval`` can be obtained
        by setting ``full_output=True`` when calling nquad.

    Returns
    -------
    result : float
        The result of the integration.
    abserr : float
        The maximum of the estimates of the absolute error in the various
        integration results.
    out_dict : dict, optional
        A dict containing additional information on the integration.

    See Also
    --------
    quad : 1-D numerical integration
    dblquad, tplquad : double and triple integrals
    fixed_quad : fixed-order Gaussian quadrature
    quadrature : adaptive Gaussian quadrature

    Examples
    --------
    >>> from scipy import integrate
    >>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
    ...                                 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
    >>> def opts0(*args, **kwargs):
    ...     return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
    >>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
    ...                 opts=[opts0,{},{},{}], full_output=True)
    (1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})

    >>> scale = .1
    >>> def func2(x0, x1, x2, x3, t0, t1):
    ...     return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0)
    >>> def lim0(x1, x2, x3, t0, t1):
    ...     return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
    ...             scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]
    >>> def lim1(x2, x3, t0, t1):
    ...     return [scale * (t0*x2 + t1*x3) - 1,
    ...             scale * (t0*x2 + t1*x3) + 1]
    >>> def lim2(x3, t0, t1):
    ...     return [scale * (x3 + t0**2*t1**3) - 1,
    ...             scale * (x3 + t0**2*t1**3) + 1]
    >>> def lim3(t0, t1):
    ...     return [scale * (t0+t1) - 1, scale * (t0+t1) + 1]
    >>> def opts0(x1, x2, x3, t0, t1):
    ...     return {'points' : [t0 - t1*x1]}
    >>> def opts1(x2, x3, t0, t1):
    ...     return {}
    >>> def opts2(x3, t0, t1):
    ...     return {}
    >>> def opts3(t0, t1):
    ...     return {}
    >>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0),
    ...                 opts=[opts0, opts1, opts2, opts3])
    (25.066666666666666, 2.7829590483937256e-13)