Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.integrate »

Fonction nquad - module scipy.integrate

Signature de la fonction nquad

def nquad(func, ranges, args=None, opts=None, full_output=False) 

Description

help(scipy.integrate.nquad)

Integration over multiple variables.

Wraps `quad` to enable integration over multiple variables.
Various options allow improved integration of discontinuous functions, as
well as the use of weighted integration, and generally finer control of the
integration process.

Parameters
----------
func : {callable, scipy.LowLevelCallable}
    The function to be integrated. Has arguments of ``x0, ... xn``,
    ``t0, ... tm``, where integration is carried out over ``x0, ... xn``,
    which must be floats.  Where ``t0, ... tm`` are extra arguments
    passed in args.
    Function signature should be ``func(x0, x1, ..., xn, t0, t1, ..., tm)``.
    Integration is carried out in order.  That is, integration over ``x0``
    is the innermost integral, and ``xn`` is the outermost.

    If the user desires improved integration performance, then `f` may
    be a `scipy.LowLevelCallable` with one of the signatures::

        double func(int n, double *xx)
        double func(int n, double *xx, void *user_data)

    where ``n`` is the number of variables and args.  The ``xx`` array
    contains the coordinates and extra arguments. ``user_data`` is the data
    contained in the `scipy.LowLevelCallable`.
ranges : iterable object
    Each element of ranges may be either a sequence  of 2 numbers, or else
    a callable that returns such a sequence. ``ranges[0]`` corresponds to
    integration over x0, and so on. If an element of ranges is a callable,
    then it will be called with all of the integration arguments available,
    as well as any parametric arguments. e.g., if
    ``func = f(x0, x1, x2, t0, t1)``, then ``ranges[0]`` may be defined as
    either ``(a, b)`` or else as ``(a, b) = range0(x1, x2, t0, t1)``.
args : iterable object, optional
    Additional arguments ``t0, ... tn``, required by ``func``, ``ranges``,
    and ``opts``.
opts : iterable object or dict, optional
    Options to be passed to `quad`. May be empty, a dict, or
    a sequence of dicts or functions that return a dict. If empty, the
    default options from scipy.integrate.quad are used. If a dict, the same
    options are used for all levels of integraion. If a sequence, then each
    element of the sequence corresponds to a particular integration. e.g.,
    ``opts[0]`` corresponds to integration over ``x0``, and so on. If a
    callable, the signature must be the same as for ``ranges``. The
    available options together with their default values are:

      - epsabs = 1.49e-08
      - epsrel = 1.49e-08
      - limit  = 50
      - points = None
      - weight = None
      - wvar   = None
      - wopts  = None

    For more information on these options, see `quad`.

full_output : bool, optional
    Partial implementation of ``full_output`` from scipy.integrate.quad.
    The number of integrand function evaluations ``neval`` can be obtained
    by setting ``full_output=True`` when calling nquad.

Returns
-------
result : float
    The result of the integration.
abserr : float
    The maximum of the estimates of the absolute error in the various
    integration results.
out_dict : dict, optional
    A dict containing additional information on the integration.

See Also
--------
quad : 1-D numerical integration
dblquad, tplquad : double and triple integrals
fixed_quad : fixed-order Gaussian quadrature

Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.

**Details of QUADPACK level routines**

`nquad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. The routine called depends on
`weight`, `points` and the integration limits `a` and `b`.

================  ==============  ==========  =====================
QUADPACK routine  `weight`        `points`    infinite bounds
================  ==============  ==========  =====================
qagse             None            No          No
qagie             None            No          Yes
qagpe             None            Yes         No
qawoe             'sin', 'cos'    No          No
qawfe             'sin', 'cos'    No          either `a` or `b`
qawse             'alg*'          No          No
qawce             'cauchy'        No          No
================  ==============  ==========  =====================

The following provides a short description from [1]_ for each
routine.

qagse
    is an integrator based on globally adaptive interval
    subdivision in connection with extrapolation, which will
    eliminate the effects of integrand singularities of
    several types.
qagie
    handles integration over infinite intervals. The infinite range is
    mapped onto a finite interval and subsequently the same strategy as
    in ``QAGS`` is applied.
qagpe
    serves the same purposes as QAGS, but also allows the
    user to provide explicit information about the location
    and type of trouble-spots i.e. the abscissae of internal
    singularities, discontinuities and other difficulties of
    the integrand function.
qawoe
    is an integrator for the evaluation of
    :math:`\int^b_a \cos(\omega x)f(x)dx` or
    :math:`\int^b_a \sin(\omega x)f(x)dx`
    over a finite interval [a,b], where :math:`\omega` and :math:`f`
    are specified by the user. The rule evaluation component is based
    on the modified Clenshaw-Curtis technique

    An adaptive subdivision scheme is used in connection
    with an extrapolation procedure, which is a modification
    of that in ``QAGS`` and allows the algorithm to deal with
    singularities in :math:`f(x)`.
qawfe
    calculates the Fourier transform
    :math:`\int^\infty_a \cos(\omega x)f(x)dx` or
    :math:`\int^\infty_a \sin(\omega x)f(x)dx`
    for user-provided :math:`\omega` and :math:`f`. The procedure of
    ``QAWO`` is applied on successive finite intervals, and convergence
    acceleration by means of the :math:`\varepsilon`-algorithm is applied
    to the series of integral approximations.
qawse
    approximate :math:`\int^b_a w(x)f(x)dx`, with :math:`a < b` where
    :math:`w(x) = (x-a)^{\alpha}(b-x)^{\beta}v(x)` with
    :math:`\alpha,\beta > -1`, where :math:`v(x)` may be one of the
    following functions: :math:`1`, :math:`\log(x-a)`, :math:`\log(b-x)`,
    :math:`\log(x-a)\log(b-x)`.

    The user specifies :math:`\alpha`, :math:`\beta` and the type of the
    function :math:`v`. A globally adaptive subdivision strategy is
    applied, with modified Clenshaw-Curtis integration on those
    subintervals which contain `a` or `b`.
qawce
    compute :math:`\int^b_a f(x) / (x-c)dx` where the integral must be
    interpreted as a Cauchy principal value integral, for user specified
    :math:`c` and :math:`f`. The strategy is globally adaptive. Modified
    Clenshaw-Curtis integration is used on those intervals containing the
    point :math:`x = c`.

References
----------

.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
       Überhuber, Christoph W.; Kahaner, David (1983).
       QUADPACK: A subroutine package for automatic integration.
       Springer-Verlag.
       ISBN 978-3-540-12553-2.

Examples
--------
Calculate

.. math::

    \int^{1}_{-0.15} \int^{0.8}_{0.13} \int^{1}_{-1} \int^{1}_{0}
    f(x_0, x_1, x_2, x_3) \,dx_0 \,dx_1 \,dx_2 \,dx_3 ,

where

.. math::

    f(x_0, x_1, x_2, x_3) = \begin{cases}
      x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+1 & (x_0-0.2 x_3-0.5-0.25 x_1 > 0) \\
      x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+0 & (x_0-0.2 x_3-0.5-0.25 x_1 \leq 0)
    \end{cases} .

>>> import numpy as np
>>> from scipy import integrate
>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
...                                 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
>>> def opts0(*args, **kwargs):
...     return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
...                 opts=[opts0,{},{},{}], full_output=True)
(1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})

Calculate

.. math::

    \int^{t_0+t_1+1}_{t_0+t_1-1}
    \int^{x_2+t_0^2 t_1^3+1}_{x_2+t_0^2 t_1^3-1}
    \int^{t_0 x_1+t_1 x_2+1}_{t_0 x_1+t_1 x_2-1}
    f(x_0,x_1, x_2,t_0,t_1)
    \,dx_0 \,dx_1 \,dx_2,

where

.. math::

    f(x_0, x_1, x_2, t_0, t_1) = \begin{cases}
      x_0 x_2^2 + \sin{x_1}+2 & (x_0+t_1 x_1-t_0 > 0) \\
      x_0 x_2^2 +\sin{x_1}+1 & (x_0+t_1 x_1-t_0 \leq 0)
    \end{cases}

and :math:`(t_0, t_1) = (0, 1)` .

>>> def func2(x0, x1, x2, t0, t1):
...     return x0*x2**2 + np.sin(x1) + 1 + (1 if x0+t1*x1-t0>0 else 0)
>>> def lim0(x1, x2, t0, t1):
...     return [t0*x1 + t1*x2 - 1, t0*x1 + t1*x2 + 1]
>>> def lim1(x2, t0, t1):
...     return [x2 + t0**2*t1**3 - 1, x2 + t0**2*t1**3 + 1]
>>> def lim2(t0, t1):
...     return [t0 + t1 - 1, t0 + t1 + 1]
>>> def opts0(x1, x2, t0, t1):
...     return {'points' : [t0 - t1*x1]}
>>> def opts1(x2, t0, t1):
...     return {}
>>> def opts2(t0, t1):
...     return {}
>>> integrate.nquad(func2, [lim0, lim1, lim2], args=(0,1),
...                 opts=[opts0, opts1, opts2])
(36.099919226771625, 1.8546948553373528e-07)



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé