Module « scipy.integrate »
Classe « Radau »
Informations générales
Héritage
builtins.object
OdeSolver
Radau
Définition
class Radau(OdeSolver):
Description [extrait de Radau.__doc__]
Implicit Runge-Kutta method of Radau IIA family of order 5.
The implementation follows [1]_. The error is controlled with a
third-order accurate embedded formula. A cubic polynomial which satisfies
the collocation conditions is used for the dense output.
Parameters
----------
fun : callable
Right-hand side of the system. The calling signature is ``fun(t, y)``.
Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
It can either have shape (n,); then ``fun`` must return array_like with
shape (n,). Alternatively it can have shape (n, k); then ``fun``
must return an array_like with shape (n, k), i.e., each column
corresponds to a single column in ``y``. The choice between the two
options is determined by `vectorized` argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian
by finite differences (required for this solver).
t0 : float
Initial time.
y0 : array_like, shape (n,)
Initial state.
t_bound : float
Boundary time - the integration won't continue beyond it. It also
determines the direction of the integration.
first_step : float or None, optional
Initial step size. Default is ``None`` which means that the algorithm
should choose.
max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
relative accuracy (number of correct digits). But if a component of `y`
is approximately below `atol`, the error only needs to fall within
the same `atol` threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.
jac : {None, array_like, sparse_matrix, callable}, optional
Jacobian matrix of the right-hand side of the system with respect to
y, required by this method. The Jacobian matrix has shape (n, n) and
its element (i, j) is equal to ``d f_i / d y_j``.
There are three ways to define the Jacobian:
* If array_like or sparse_matrix, the Jacobian is assumed to
be constant.
* If callable, the Jacobian is assumed to depend on both
t and y; it will be called as ``jac(t, y)`` as necessary.
For the 'Radau' and 'BDF' methods, the return value might be a
sparse matrix.
* If None (default), the Jacobian will be approximated by
finite differences.
It is generally recommended to provide the Jacobian rather than
relying on a finite-difference approximation.
jac_sparsity : {None, array_like, sparse matrix}, optional
Defines a sparsity structure of the Jacobian matrix for a
finite-difference approximation. Its shape must be (n, n). This argument
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
elements in *each* row, providing the sparsity structure will greatly
speed up the computations [2]_. A zero entry means that a corresponding
element in the Jacobian is always zero. If None (default), the Jacobian
is assumed to be dense.
vectorized : bool, optional
Whether `fun` is implemented in a vectorized fashion. Default is False.
Attributes
----------
n : int
Number of equations.
status : string
Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
Boundary time.
direction : float
Integration direction: +1 or -1.
t : float
Current time.
y : ndarray
Current state.
t_old : float
Previous time. None if no steps were made yet.
step_size : float
Size of the last successful step. None if no steps were made yet.
nfev : int
Number of evaluations of the right-hand side.
njev : int
Number of evaluations of the Jacobian.
nlu : int
Number of LU decompositions.
References
----------
.. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems", Sec. IV.8.
.. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13, pp. 117-120, 1974.
Constructeur(s)
__init__(self, fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None, jac_sparsity=None, vectorized=False, first_step=None, **extraneous) |
|
Liste des attributs statiques
TOO_SMALL_STEP | Required step size is less than spacing between numbers. |
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe OdeSolver
__init_subclass__, __subclasshook__, dense_output, step
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :