Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.integrate »

Fonction quad - module scipy.integrate

Signature de la fonction quad

def quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50, complex_func=False) 

Description

help(scipy.integrate.quad)

Compute a definite integral.

Integrate func from `a` to `b` (possibly infinite interval) using a
technique from the Fortran library QUADPACK.

Parameters
----------
func : {function, scipy.LowLevelCallable}
    A Python function or method to integrate. If `func` takes many
    arguments, it is integrated along the axis corresponding to the
    first argument.

    If the user desires improved integration performance, then `f` may
    be a `scipy.LowLevelCallable` with one of the signatures::

        double func(double x)
        double func(double x, void *user_data)
        double func(int n, double *xx)
        double func(int n, double *xx, void *user_data)

    The ``user_data`` is the data contained in the `scipy.LowLevelCallable`.
    In the call forms with ``xx``,  ``n`` is the length of the ``xx``
    array which contains ``xx[0] == x`` and the rest of the items are
    numbers contained in the ``args`` argument of quad.

    In addition, certain ctypes call signatures are supported for
    backward compatibility, but those should not be used in new code.
a : float
    Lower limit of integration (use -numpy.inf for -infinity).
b : float
    Upper limit of integration (use numpy.inf for +infinity).
args : tuple, optional
    Extra arguments to pass to `func`.
full_output : int, optional
    Non-zero to return a dictionary of integration information.
    If non-zero, warning messages are also suppressed and the
    message is appended to the output tuple.
complex_func : bool, optional
    Indicate if the function's (`func`) return type is real
    (``complex_func=False``: default) or complex (``complex_func=True``).
    In both cases, the function's argument is real.
    If full_output is also non-zero, the `infodict`, `message`, and
    `explain` for the real and complex components are returned in
    a dictionary with keys "real output" and "imag output".

Returns
-------
y : float
    The integral of func from `a` to `b`.
abserr : float
    An estimate of the absolute error in the result.
infodict : dict
    A dictionary containing additional information.
message
    A convergence message.
explain
    Appended only with 'cos' or 'sin' weighting and infinite
    integration limits, it contains an explanation of the codes in
    infodict['ierlst']

Other Parameters
----------------
epsabs : float or int, optional
    Absolute error tolerance. Default is 1.49e-8. `quad` tries to obtain
    an accuracy of ``abs(i-result) <= max(epsabs, epsrel*abs(i))``
    where ``i`` = integral of `func` from `a` to `b`, and ``result`` is the
    numerical approximation. See `epsrel` below.
epsrel : float or int, optional
    Relative error tolerance. Default is 1.49e-8.
    If ``epsabs <= 0``, `epsrel` must be greater than both 5e-29
    and ``50 * (machine epsilon)``. See `epsabs` above.
limit : float or int, optional
    An upper bound on the number of subintervals used in the adaptive
    algorithm.
points : (sequence of floats,ints), optional
    A sequence of break points in the bounded integration interval
    where local difficulties of the integrand may occur (e.g.,
    singularities, discontinuities). The sequence does not have
    to be sorted. Note that this option cannot be used in conjunction
    with ``weight``.
weight : float or int, optional
    String indicating weighting function. Full explanation for this
    and the remaining arguments can be found below.
wvar : optional
    Variables for use with weighting functions.
wopts : optional
    Optional input for reusing Chebyshev moments.
maxp1 : float or int, optional
    An upper bound on the number of Chebyshev moments.
limlst : int, optional
    Upper bound on the number of cycles (>=3) for use with a sinusoidal
    weighting and an infinite end-point.

See Also
--------
dblquad : double integral
tplquad : triple integral
nquad : n-dimensional integrals (uses `quad` recursively)
fixed_quad : fixed-order Gaussian quadrature
simpson : integrator for sampled data
romb : integrator for sampled data
scipy.special : for coefficients and roots of orthogonal polynomials

Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.

**Extra information for quad() inputs and outputs**

If full_output is non-zero, then the third output argument
(infodict) is a dictionary with entries as tabulated below. For
infinite limits, the range is transformed to (0,1) and the
optional outputs are given with respect to this transformed range.
Let M be the input argument limit and let K be infodict['last'].
The entries are:

'neval'
    The number of function evaluations.
'last'
    The number, K, of subintervals produced in the subdivision process.
'alist'
    A rank-1 array of length M, the first K elements of which are the
    left end points of the subintervals in the partition of the
    integration range.
'blist'
    A rank-1 array of length M, the first K elements of which are the
    right end points of the subintervals.
'rlist'
    A rank-1 array of length M, the first K elements of which are the
    integral approximations on the subintervals.
'elist'
    A rank-1 array of length M, the first K elements of which are the
    moduli of the absolute error estimates on the subintervals.
'iord'
    A rank-1 integer array of length M, the first L elements of
    which are pointers to the error estimates over the subintervals
    with ``L=K`` if ``K<=M/2+2`` or ``L=M+1-K`` otherwise. Let I be the
    sequence ``infodict['iord']`` and let E be the sequence
    ``infodict['elist']``.  Then ``E[I[1]], ..., E[I[L]]`` forms a
    decreasing sequence.

If the input argument points is provided (i.e., it is not None),
the following additional outputs are placed in the output
dictionary. Assume the points sequence is of length P.

'pts'
    A rank-1 array of length P+2 containing the integration limits
    and the break points of the intervals in ascending order.
    This is an array giving the subintervals over which integration
    will occur.
'level'
    A rank-1 integer array of length M (=limit), containing the
    subdivision levels of the subintervals, i.e., if (aa,bb) is a
    subinterval of ``(pts[1], pts[2])`` where ``pts[0]`` and ``pts[2]``
    are adjacent elements of ``infodict['pts']``, then (aa,bb) has level l
    if ``|bb-aa| = |pts[2]-pts[1]| * 2**(-l)``.
'ndin'
    A rank-1 integer array of length P+2. After the first integration
    over the intervals (pts[1], pts[2]), the error estimates over some
    of the intervals may have been increased artificially in order to
    put their subdivision forward. This array has ones in slots
    corresponding to the subintervals for which this happens.

**Weighting the integrand**

The input variables, *weight* and *wvar*, are used to weight the
integrand by a select list of functions. Different integration
methods are used to compute the integral with these weighting
functions, and these do not support specifying break points. The
possible values of weight and the corresponding weighting functions are.

==========  ===================================   =====================
``weight``  Weight function used                  ``wvar``
==========  ===================================   =====================
'cos'       cos(w*x)                              wvar = w
'sin'       sin(w*x)                              wvar = w
'alg'       g(x) = ((x-a)**alpha)*((b-x)**beta)   wvar = (alpha, beta)
'alg-loga'  g(x)*log(x-a)                         wvar = (alpha, beta)
'alg-logb'  g(x)*log(b-x)                         wvar = (alpha, beta)
'alg-log'   g(x)*log(x-a)*log(b-x)                wvar = (alpha, beta)
'cauchy'    1/(x-c)                               wvar = c
==========  ===================================   =====================

wvar holds the parameter w, (alpha, beta), or c depending on the weight
selected. In these expressions, a and b are the integration limits.

For the 'cos' and 'sin' weighting, additional inputs and outputs are
available.

For finite integration limits, the integration is performed using a
Clenshaw-Curtis method which uses Chebyshev moments. For repeated
calculations, these moments are saved in the output dictionary:

'momcom'
    The maximum level of Chebyshev moments that have been computed,
    i.e., if ``M_c`` is ``infodict['momcom']`` then the moments have been
    computed for intervals of length ``|b-a| * 2**(-l)``,
    ``l=0,1,...,M_c``.
'nnlog'
    A rank-1 integer array of length M(=limit), containing the
    subdivision levels of the subintervals, i.e., an element of this
    array is equal to l if the corresponding subinterval is
    ``|b-a|* 2**(-l)``.
'chebmo'
    A rank-2 array of shape (25, maxp1) containing the computed
    Chebyshev moments. These can be passed on to an integration
    over the same interval by passing this array as the second
    element of the sequence wopts and passing infodict['momcom'] as
    the first element.

If one of the integration limits is infinite, then a Fourier integral is
computed (assuming w neq 0). If full_output is 1 and a numerical error
is encountered, besides the error message attached to the output tuple,
a dictionary is also appended to the output tuple which translates the
error codes in the array ``info['ierlst']`` to English messages. The
output information dictionary contains the following entries instead of
'last', 'alist', 'blist', 'rlist', and 'elist':

'lst'
    The number of subintervals needed for the integration (call it ``K_f``).
'rslst'
    A rank-1 array of length M_f=limlst, whose first ``K_f`` elements
    contain the integral contribution over the interval
    ``(a+(k-1)c, a+kc)`` where ``c = (2*floor(|w|) + 1) * pi / |w|``
    and ``k=1,2,...,K_f``.
'erlst'
    A rank-1 array of length ``M_f`` containing the error estimate
    corresponding to the interval in the same position in
    ``infodict['rslist']``.
'ierlst'
    A rank-1 integer array of length ``M_f`` containing an error flag
    corresponding to the interval in the same position in
    ``infodict['rslist']``.  See the explanation dictionary (last entry
    in the output tuple) for the meaning of the codes.


**Details of QUADPACK level routines**

`quad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. The routine called depends on
`weight`, `points` and the integration limits `a` and `b`.

================  ==============  ==========  =====================
QUADPACK routine  `weight`        `points`    infinite bounds
================  ==============  ==========  =====================
qagse             None            No          No
qagie             None            No          Yes
qagpe             None            Yes         No
qawoe             'sin', 'cos'    No          No
qawfe             'sin', 'cos'    No          either `a` or `b`
qawse             'alg*'          No          No
qawce             'cauchy'        No          No
================  ==============  ==========  =====================

The following provides a short description from [1]_ for each
routine.

qagse
    is an integrator based on globally adaptive interval
    subdivision in connection with extrapolation, which will
    eliminate the effects of integrand singularities of
    several types.
qagie
    handles integration over infinite intervals. The infinite range is
    mapped onto a finite interval and subsequently the same strategy as
    in ``QAGS`` is applied.
qagpe
    serves the same purposes as QAGS, but also allows the
    user to provide explicit information about the location
    and type of trouble-spots i.e. the abscissae of internal
    singularities, discontinuities and other difficulties of
    the integrand function.
qawoe
    is an integrator for the evaluation of
    :math:`\int^b_a \cos(\omega x)f(x)dx` or
    :math:`\int^b_a \sin(\omega x)f(x)dx`
    over a finite interval [a,b], where :math:`\omega` and :math:`f`
    are specified by the user. The rule evaluation component is based
    on the modified Clenshaw-Curtis technique

    An adaptive subdivision scheme is used in connection
    with an extrapolation procedure, which is a modification
    of that in ``QAGS`` and allows the algorithm to deal with
    singularities in :math:`f(x)`.
qawfe
    calculates the Fourier transform
    :math:`\int^\infty_a \cos(\omega x)f(x)dx` or
    :math:`\int^\infty_a \sin(\omega x)f(x)dx`
    for user-provided :math:`\omega` and :math:`f`. The procedure of
    ``QAWO`` is applied on successive finite intervals, and convergence
    acceleration by means of the :math:`\varepsilon`-algorithm is applied
    to the series of integral approximations.
qawse
    approximate :math:`\int^b_a w(x)f(x)dx`, with :math:`a < b` where
    :math:`w(x) = (x-a)^{\alpha}(b-x)^{\beta}v(x)` with
    :math:`\alpha,\beta > -1`, where :math:`v(x)` may be one of the
    following functions: :math:`1`, :math:`\log(x-a)`, :math:`\log(b-x)`,
    :math:`\log(x-a)\log(b-x)`.

    The user specifies :math:`\alpha`, :math:`\beta` and the type of the
    function :math:`v`. A globally adaptive subdivision strategy is
    applied, with modified Clenshaw-Curtis integration on those
    subintervals which contain `a` or `b`.
qawce
    compute :math:`\int^b_a f(x) / (x-c)dx` where the integral must be
    interpreted as a Cauchy principal value integral, for user specified
    :math:`c` and :math:`f`. The strategy is globally adaptive. Modified
    Clenshaw-Curtis integration is used on those intervals containing the
    point :math:`x = c`.

**Integration of Complex Function of a Real Variable**

A complex valued function, :math:`f`, of a real variable can be written as
:math:`f = g + ih`.  Similarly, the integral of :math:`f` can be
written as

.. math::
    \int_a^b f(x) dx = \int_a^b g(x) dx + i\int_a^b h(x) dx

assuming that the integrals of :math:`g` and :math:`h` exist
over the interval :math:`[a,b]` [2]_. Therefore, ``quad`` integrates
complex-valued functions by integrating the real and imaginary components
separately.


References
----------

.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
       Überhuber, Christoph W.; Kahaner, David (1983).
       QUADPACK: A subroutine package for automatic integration.
       Springer-Verlag.
       ISBN 978-3-540-12553-2.

.. [2] McCullough, Thomas; Phillips, Keith (1973).
       Foundations of Analysis in the Complex Plane.
       Holt Rinehart Winston.
       ISBN 0-03-086370-8

Examples
--------
Calculate :math:`\int^4_0 x^2 dx` and compare with an analytic result

>>> from scipy import integrate
>>> import numpy as np
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.)  # analytical result
21.3333333333

Calculate :math:`\int^\infty_0 e^{-x} dx`

>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)

Calculate :math:`\int^1_0 a x \,dx` for :math:`a = 1, 3`

>>> f = lambda x, a: a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5

Calculate :math:`\int^1_0 x^2 + y^2 dx` with ctypes, holding
y parameter as 1::

    testlib.c =>
        double func(int n, double args[n]){
            return args[0]*args[0] + args[1]*args[1];}
    compile to library testlib.*

::

   from scipy import integrate
   import ctypes
   lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
   lib.func.restype = ctypes.c_double
   lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
   integrate.quad(lib.func,0,1,(1))
   #(1.3333333333333333, 1.4802973661668752e-14)
   print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
   # 1.3333333333333333

Be aware that pulse shapes and other sharp features as compared to the
size of the integration interval may not be integrated correctly using
this method. A simplified example of this limitation is integrating a
y-axis reflected step function with many zero values within the integrals
bounds.

>>> y = lambda x: 1 if x<=0 else 0
>>> integrate.quad(y, -1, 1)
(1.0, 1.1102230246251565e-14)
>>> integrate.quad(y, -1, 100)
(1.0000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)
(0.0, 0.0)



Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé