Module « scipy.integrate »
Signature de la fonction cumulative_trapezoid
def cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None)
Description
cumulative_trapezoid.__doc__
Cumulatively integrate y(x) using the composite trapezoidal rule.
Parameters
----------
y : array_like
Values to integrate.
x : array_like, optional
The coordinate to integrate along. If None (default), use spacing `dx`
between consecutive elements in `y`.
dx : float, optional
Spacing between elements of `y`. Only used if `x` is None.
axis : int, optional
Specifies the axis to cumulate. Default is -1 (last axis).
initial : scalar, optional
If given, insert this value at the beginning of the returned result.
Typically this value should be 0. Default is None, which means no
value at ``x[0]`` is returned and `res` has one element less than `y`
along the axis of integration.
Returns
-------
res : ndarray
The result of cumulative integration of `y` along `axis`.
If `initial` is None, the shape is such that the axis of integration
has one less value than `y`. If `initial` is given, the shape is equal
to that of `y`.
See Also
--------
numpy.cumsum, numpy.cumprod
quad: adaptive quadrature using QUADPACK
romberg: adaptive Romberg quadrature
quadrature: adaptive Gaussian quadrature
fixed_quad: fixed-order Gaussian quadrature
dblquad: double integrals
tplquad: triple integrals
romb: integrators for sampled data
ode: ODE integrators
odeint: ODE integrators
Examples
--------
>>> from scipy import integrate
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :