Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.sparse.linalg »
Signature de la fonction tfqmr
def tfqmr(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None, show=False)
Description
help(scipy.sparse.linalg.tfqmr)
Use Transpose-Free Quasi-Minimal Residual iteration to solve ``Ax = b``.
Parameters
----------
A : {sparse array, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system.
Alternatively, `A` can be a linear operator which can
produce ``Ax`` using, e.g.,
`scipy.sparse.linalg.LinearOperator`.
b : {ndarray}
Right hand side of the linear system. Has shape (N,) or (N,1).
x0 : {ndarray}
Starting guess for the solution.
rtol, atol : float, optional
Parameters for the convergence test. For convergence,
``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
The default is ``rtol=1e-5``, the default for ``atol`` is ``0.0``.
maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
Default is ``min(10000, ndofs * 10)``, where ``ndofs = A.shape[0]``.
M : {sparse array, ndarray, LinearOperator}
Inverse of the preconditioner of A. M should approximate the
inverse of A and be easy to solve for (see Notes). Effective
preconditioning dramatically improves the rate of convergence,
which implies that fewer iterations are needed to reach a given
error tolerance. By default, no preconditioner is used.
callback : function, optional
User-supplied function to call after each iteration. It is called
as ``callback(xk)``, where ``xk`` is the current solution vector.
show : bool, optional
Specify ``show = True`` to show the convergence, ``show = False`` is
to close the output of the convergence.
Default is `False`.
Returns
-------
x : ndarray
The converged solution.
info : int
Provides convergence information:
- 0 : successful exit
- >0 : convergence to tolerance not achieved, number of iterations
- <0 : illegal input or breakdown
Notes
-----
The Transpose-Free QMR algorithm is derived from the CGS algorithm.
However, unlike CGS, the convergence curves for the TFQMR method is
smoothed by computing a quasi minimization of the residual norm. The
implementation supports left preconditioner, and the "residual norm"
to compute in convergence criterion is actually an upper bound on the
actual residual norm ``||b - Axk||``.
References
----------
.. [1] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for
Non-Hermitian Linear Systems, SIAM J. Sci. Comput., 14(2), 470-482,
1993.
.. [2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition,
SIAM, Philadelphia, 2003.
.. [3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
number 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia,
1995.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import tfqmr
>>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = tfqmr(A, b, atol=0.0)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :